Виды калориферов и расчёт их мощности для вентиляции

Необходимость установки фильтра

При применении в вентиляционных системах, использующих наружный воздух, перед нагревателем необходимо устанавливать воздушный фильтр с классом фильтрации не хуже EU3, который задержит пыль, семена и пыльцу, находящиеся в приточном воздухе. Если фильтр не установлен, то при попадании этих частиц на горячую поверхность нагревательных элементов, произойдет их налипание что может значительно ухудшить теплосъем с нагревателей. ТЭНы начнут перегреваться, что может вызвать их выход из строя.

Когда фильтр установлен, нужно периодически проверять его загрязнение. Обычно в вентиляционной системе устанавливается дифференциальный датчик давления, который измеряет падение давления на фильтре. Если падение превысило установленное значение (фильтр забился), то на щите управления вентиляционной установки должна загораться контрольная лампочка о необходимости замены фильтра.

Ремонт калориферов

Низкие показатели температур и эксплуатация с явными ошибками, неточности в настройке систем автоматики и защиты — данные факторы способны привести к одной и той же проблеме — разморозке теплообменника.

Верная эксплуатации вентиляционной системы предполагает четкое отслеживание системой автоматики температуры обратной воды, проходящей через водяной теплообменник. Если, показатели ее будут ниже положенной, система обязана подавать сигналы по поводу необходимости проведения регулировки либо же отключения системы вообще. Однако порой автоматика дает сбой, а случается, что в ней и вовсе отсутствуют функции защиты водяного теплообменника от разморозки.

Если к указанному добавить неверную эксплуатацию, то на лицо будет серьезная проблема, связанная с выходом из строя калорифера. На самом деле ремонт теплообменников вентиляции относят к разряду постоянных сервисных задач, ведь выходят данные устройства из строя постоянно, в особенности в периоды резкого похолодания, а точнее в наиболее низкотемпературные дни зимы. Понятно, что основная причина, приводящая к необходимости ремонта — это его разморозка. Случается это и из-за особенностей конструкции, и из-за неверно подобранной или некорректно работающей автоматики системы. В последнем случае речь идет о надежности работы автоматики по поддержании защиты калорифера от замерзания и по воздуху, и по воде.

Чтобы зимой не пришлось столкнуться с разморозкой и экстренным ремонтом калорифера рационально в летний период провести диагностику устройства и по необходимости текущий ремонт.

Безусловно, ремонт калорифера, в качестве варианта его восстановления, до поры до времени возможен и дает положительный результат, но в конечном итоге ни одно устройство не вечно, и придется задуматься о его замене.

К большому сожалению, водяные теплообменники в системах вентиляции признаны наиболее уязвимыми компонентами. Потому так важен верный изначальный подбор данных устройств и по параметрам, и по задачам. Совершенно не хочется, чтобы сразу же по завершению гарантийного срока эксплуатации предстоял ремонт калориферов, потому для обеспечения максимально корректной, продолжительной работы расчет необходимого устройства по специальной программе действительно обязателен. Это же позволит не переплачивать за ненужные функции и мощность.

Отметим, что верно подобранная и собранная автоматика системы приточной вентиляции с самого начала предусматривает все разновидности защиты от замерзания калорифера (по воде, по воздуху, опция автоматики по предварительному прогреву, дежурный режим при выключенной установке) и потому вероятность разморозки такой системы при грамотном подходе фактически будет исключена.

Виды и типы приточной вентиляции

  • Естественная приточная вентиляция подразумевает поступление свежего воздуха под влиянием потока ветра, перепада давления и температур воздушных потоков. Наиболее простой пример естественной вентиляции – сквозное проветривание через окна, двери.
  • Принудительная приточная система подает свежий воздух через систему воздуховодов под воздействием специального оборудования. Главное преимущество заключается в независимости от окружающей среды. Дополнительные функции очистки, охлаждения, подогрева, увлажнения, осушения, ионизации улучшают качество воздуха.

По конструкции приточная вентиляция бывает моноблочного и наборного (канального) и типа:

  • Моноблочная система размещается в закрытом шумоизолированном корпусе и подает очищенный воздух в помещения с небольшой площадью. Компактная система состоит из приточного клапана с вентилятором, фильтром и нагревателем. Системы моноблочного типа бывают отдельностоящими или подсоединяются в централизованную систему приточно-вытяжного типа. В жилых и офисных помещениях устанавливают:

    • Проветриватель – приточный клапан, подающий чистый воздух в помещение. Выбор температуры приточного воздуха осуществляется пользователем.
    • Бризер – компактный настенный блок, оснащенный многоступенчатой системой фильтрации, ионизации воздуха. Встроенная система автоматизации позволяет адаптировать температуру входящего воздуха под условия окружающей среды.
  • Канальная система монтируется из отдельного оборудования, обустроенного под подвесным потолком или в системе коммуникаций. Канальный тип состоит из системы воздуховодов, подведенных в каждое помещение. Установки активно применяются для подачи кислорода в недостаточно вентилируемые помещения, на дальние расстояния. Габариты и производительность наборных систем значительно выше системы бесканального типа.

По способу воздухообмена выделяют местную и общеобменную приточную системы.

Местная подает свежий воздух локально в определенное рабочее место или жилое помещение, в котором установлен прибор. Для промышленных объектов устанавливают локальные приточные устройства: воздушные оазисы и души.

Общеобменная создает равномерный приток воздуха по всему помещению. Приточный воздух подается пропорционально объему удаляемого через вытяжные каналы.

В зависимости от мощности различают бытовые, полупромышленные, промышленные приточные вентиляционные системы. По направлению воздуховодов: горизонтальные, вертикальные, универсальные.

Воздух в помещении в 5 раз грязнее и в 10 раз токсичнее уличного. При этом, в помещениях среднестатистический человек проводит до 90 % времени.

Виды

Нагреватели для приточной вентиляции классифицируются по виду источника тепла и бывают водяными, паровыми и электрическими.

Водяные модели

Используются во всех типах вентсистем и могут иметь двух- и трёхрядное исполнение. Приборы устанавливают в системы вентиляции помещений, площадь которых превышает 150 квадратных метров. Данный вид калориферов является абсолютно пожаробезопасным и наименее энергозатратным, что обусловлено возможностью использования в качестве теплоносителя воды из отопительной системы.

Принцип работы водяных нагревателей сводится к следующему: уличный воздух забирается сквозь воздухозаборные решётки и подаётся по воздуховоду к фильтрам грубой очистки. Там воздушные массы очищаются от пыли, насекомых и мелкого механического мусора, и поступают в калорифер. В корпусе нагревателя установлен медный теплообменник, состоящий из звеньев, располагающихся в шахматном порядке, и оснащённых алюминиевыми пластинами. Пластины значительно увеличивают теплоотдачу медного змеевика, чем существенно повышают КПД прибора. В качестве теплоносителя, протекающего через змеевик, может выступать вода, антифриз или водно-гликолевый раствор.

Потоки холодного воздуха, проходя через теплообменник, забирают тепло от металлических поверхностей и переносят его в помещение. Использование водяных нагревателей позволяет нагревать воздушные потоки до 100 градусов, что предоставляет широкие возможности для их применения в спортивных сооружениях, торговых центрах, подземных паркингах, складах и теплицах.

Наряду с очевидными преимуществами, водяные модели имеют ряд недостатков. К минусам приборов относят риск перемерзания воды в трубах при резком понижении температур, и невозможность использования подогрева в летний период, когда система отопления не функционирует.

Паровые модели

Устанавливаются на предприятиях промышленного сектора, где есть возможность производства большого количества пара для технических нужд. В приточных вентсистемах бытового назначения такие калориферы не используются. В роли теплового носителя данных установок выступает пар, что объясняет мгновенный нагрев проходящих потоков и высокий КПД паровых калориферов.

Чтобы этого не произошло, все теплообменники в процессе производства подвергаются тесту на герметичность. Испытания осуществляются при помощи струй холодного воздуха, подаваемых под давлением в 30 Бар. Тепловой обменник при этом помещается в резервуар с тёплой водой.

Электрические модели

Являются наиболее простым вариантом нагревателей, и устанавливаются в вентсистемы, обслуживающие небольшие пространства. В отличие от калориферов водяного и парового типов, электрокалорифер не предполагает обустройства дополнительных коммуникаций. Для их подключения достаточно иметь поблизости розетку напряжением 220 В. Принцип работы электрокалориферов не отличается от принципа действия других нагревателей и заключается в нагреве воздушных масс, проходящих сквозь ТЭНы.

Даже при незначительном понижении этого показателя происходит перегрев электронагревательного элемента, и его поломка. Более дорогие модели оборудованы биметаллическими термовыключателями, отключающими элемент в случае явного перегрева.

Плюсами электрических калориферов является простой монтаж, отсутствие необходимости подведения трубопровода, и независимость от отопительного сезона. К минусам относят большой расход электроэнергии и нецелесообразность установки в мощные вентиляционные системы, обслуживающие большие пространства.

Расчет мощности калорифера

Для правильного расчета калорифера необходимо определиться с исходными данными: производительностью, плотностью воздуха, уличной и желаемой температурой в помещении. Последние показатели чрезвычайно важны, поскольку от них зависит количество тепла, затрачиваемого на нагрев 1 м3 воздуха. Часть данных можно узнать из специальных таблиц.

Водяной прибор


Расчет мощности исходя из уличных температур Чтобы рассчитать площадь сечения водяного калорифера, применяют формулу Аф= L×ρул/3600 (ϑρ). Используются значения:

  • L – производительность, которая выражается в м3/ч или кг/ч;
  • pул – плотность воздуха на улице по таблице;
  • ϑρ – массовая скорость воздуха в сечении.

Получив результат, подбирают для системы вентиляции один калорифер стандартного размера или несколько приборов так, чтобы площадь или сумма площадей были равны или чуть больше расчетного значения.

Массовый расход воздуха в кг/ч вычисляют по формуле G=L×pср:

pср– плотность воздуха при средней температуре.

pср рассчитывают по формуле (tул+tкон)/2:

  • tул – уличная температура воздуха в самую холодную пятидневку года;
  • tкон – желаемая температура в помещении.

Потом для среднего показателя определяют плотность по таблице.

Вычисляют расход тепла для прогрева воздуха по формуле: Q (Вт) = G×c×(tкон–tул)

Для примера будут рассчитаны данные, если известно:

  • L – 10000 м3/ч (производительность указывается в документации);
  • tкон – 21°C;
  • tул – –25°C.

pср =(–25°C +21°C)/2=–2°C

Плотность воздуха при этой температуре – 1,303.

Массовый расход воздушной массы равен G=10000 м3/ч×1,303 кг/м3=13030кг/ч

Отсюда Q=13030/3600×1011×(21-(-25))=168325 Вт.

К этой величине необходимо добавить 10-15% для запаса мощности.

Паровой калорифер

Мощность парового калорифера определяют тем же способом, только для расчета G используют формулу G=Q/r. r – удельная теплота, образующаяся при конденсации пара в кДж/кг.

Электрический калорифер


Формула расчета мощности калорифера Для электрических приборов большую часть необходимых данных обычно указывает изготовитель, что значительно упрощает расчет нагрева воздуха и выбор калорифера. Несмотря на относительно низкую тепловую мощность, электрокалориферная система потребляет много электроэнергии, поэтому ее зачастую приходится подключать отдельным кабелем к щитку. Калориферы мощностью более 7 кВт запитывают от сети 380 В.

Потребляемый ток рассчитывают по формуле I=P/U, где P – мощность, а U – напряжение. Значение U зависит от особенностей подключения. Если подключение однофазное, U=220В, если трехфазное, U=660В.

Температуру нагрева рассчитывают по формуле T=2,98×P/L, где L – как и в других расчетах, производительность системы.

Расчёт мощности

Получение воздуха с необходимыми температурными показателями предполагает проведение правильных расчётов и грамотного выбора устройства для вентиляции приточного типа. Даже несмотря на то, что особой популярностью пользуются современные водяные приборы с тепловым носителем в виде горячей воды, при выборе устройства любого типа изначально требуется определиться с его мощностью на основе исходных данных, представленных:

  • объёмом нагреваемых приточных воздушных масс в м³/ч или кг/ч;
  • температурными показателями исходных воздушных масс, равными расчётной температуре уличного воздуха в конкретном регионе;
  • предпочтительным температурным режимом воздушных потоков после нагрева;
  • температурным графиком теплового носителя, который используется для прогрева.

Упрощённое определение мощности канального нагревателя выполняется в соответствии с простой формулой:

Р = 0,34 × Q × Т

Q — производительность вентиляционной системы в м3/час;

Т — разница температурных показателей на вход и выход в вентиляционном канале.

Например, объём воздуха в комнате площадью в 20 м2 при высоте потолка 300 см, равен 60 м3, поэтому однократный воздухообмен составляет 60 м2/час.

Подаваемый в помещение с улицы приточный воздух требует обработки, чтобы получить нормативные параметры. Обрабатывать воздушные массы можно фильтрацией, нагревом, охлаждением и увлажнением. Прогрев приточных воздушных потоков осуществляется внутри специального теплообменного оборудования, представленного калориферами.

Жидкостные канальные воздухонагреватели являются сегодня самыми популярными, широко используемыми в большинстве вентиляционных систем. Теплоноситель жидкого типа постоянно перемещается в направлении, которое противоположно воздушным потокам, что обеспечивает эффективное и недорогое отопление, существенно экономящее энергоресурсы и поддерживающее оптимальные микроклиматические условия в помещениях любого типа.

Агрегаты системы приточной вентиляции

Стандартная схема приточной вентиляции состоит из 11 основных элементов:

  1. Вентиляторы – управляют потоком воздуха и создают давление в системе;
  2. Фильтры – очищают поступающий воздух;
  3. Воздуховоды – трубы, по которым циркулирует воздух;
  4. Воздухозаборная решетка, – через которую производится забор воздуха с улицы;
  5. Воздухораспределители – элементы, через которые воздух попадает в помещение;
  6. Калорифер + для приточной вентиляции – водяной или электрический агрегат для подогрева воздуха в холодный период, охлаждения- в летний;
  7. Воздушный клапан – предотвращает бесконтрольное попадание воздуха при выключенной системе;
  8. Диффузоры – распределяют поток входящего и исходящего воздуха;
  9. Шумоглушители – устройства со звукоизоляционным материалом;
  10. Система контроля – оборудование для автоматизации и управления процессами вентиляции.
  11. Рекуператор – роторные или пластинчатые установки, которые обеспечивают теплообмен.

Современные приборы позволяют регулировать теплообмен входящего и удаляемого воздуха и обеспечивают отопление приточной вентиляцией. Снизить энергозатраты на отопление помещения до 85% позволяет приточная вентиляция с рекуперацией. Рекуператор обеспечивает нагрев приточного воздуха в холодный период за счет передачи тепловой энергии от вытяжного потока. В летный период под воздействием прибора входящий воздух охлаждается до комфортного уровня. Приточная система может быть дополнена: осушителем, увлажнителем, обеззараживателем.

Определение

Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные – энергия передаётся через трубы с горячей водой, паром.
  2. Электрические – тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Более подробная информация об устройстве и нормативных данных СНиП и ГОСТ представлена в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Электрический калорифер

Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата – инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Водяной калорифер

Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода – снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит узел обвязки: (обеспечивает подвод теплоносителя к обменщику),  насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Схема работы

(1)— при t нар. 28°С 70% отн.влажн. или 23.7°С мокр.терм. и t внутр. 22°С

(2)— при t нар. 7°С сух.терм. или 6°С мокр.терм. и 20°С и 40% отн.влаж. внутреннего воздуха

* — 1ф под заказ

** — в зимний период, для установок с водяным калорифером совместная работа теплового насоса и калорифера возможна только при применении незамерзающего теплоносителя, при необходимости требуется указать при заказе.

*** — температура подаваемого теплоносителя должна находиться в диапазоне 90/70 ºС.

  • Регулировка скорости;
  • Возможность управления через приложение с Вашего смартфона (OS Android, опция).​

Конструкция установки CLIMATE

1. Фильтры EU-4

Страна-производитель ткани: Германия

Тип: кассетные, регенерируемые

2. Вентиляторы

Страна-производитель: Германия

Тип: радиальный, двустороннего всасывания

3. Компрессор фреонового контура

Производитель: Mitsubishi Electric

Тип: роторный.

Гарантированный ресурс: более 80 000 часов, или более 10 лет непрерывной работы

4.Электрический нагреватель

— (стандартная комплектация)

5. Водяной калорифер (комплектация под заказ)

Страна-производитель: Россия

6. Энегроэффективные теплообменники

Страна-производитель: Россия

Тип: оребренные, медно-алюминиевые, шестирядные

7. Автоматика

Страна-производитель: Россия

8. Теплоизолированный корпус системы крепления без потери высоты

Система автоматизированного управления

  • Полная самодиагностика при включении;​
  • Протоколирование работы установки с записью в энергонезависимую память;​
  • Процедура модернизации программного обеспечения;​
  • Автоматическое переключение режимов «нагрев/охлаждение» согласно показаниям температурных датчиков и настроек пользователя;
  • Наличие сервисного режима-просмотра показаний каждого температурного датчика;
  • Регулировка скорости;
  • Возможность интеграции в систему диспетчеризации, удаленного управления через локальную сеть «Ethernet»;
  • Возможность управления через приложение с Вашего смартфона (OS Android, опция).

Приточно-вытяжные установки с водяным калорифером являются наиболее энергоэффективным вентиляционным оборудованием. Для выполнения всех возложенных на них функций (включая подогрев приточного воздуха) затрачивается минимальное количество электроэнергии. Водяной калорифер (или нагреватель) использует для нагрева приточного воздуха тепловую энергию, поступающую из системы отопления. Подключение калорифера к системе отопления осуществляется через смесительный узел с двух- или трехходовым вентилем. Выбор вентиля определяется особенностями системы теплоснабжения. Водяной калорифер может подключаться как к центральной системе отопления, так и к автономной (в частности, к газовому котлу в собственном доме или коттедже).

Особенно актуальными подобные вентиляционные устройства являются для зданий с ограниченной нагрузкой на электросети. Монтаж установки с водяным нагревателем сложнее и дороже, чем с установки с электрическим калорифером, но затраченные средства быстро окупаются за счет экономии электроэнергии в процессе эксплуатации оборудования.

Дополнительными преимуществами эксплуатации именно этого вентиляционного оборудования являются:

  • компактные габариты;
  • минимальный уровень шума;
  • возможность регулирования скорости вращения вентилятора;
  • защита рекуператора от обмерзания.

Комплектация приточно-вытяжной установки с водяным калорифером включает в себя:

  • приточный и вытяжной вентиляторы;
  • рекуператор;
  • калорифер;
  • смесительный узел с насосом;
  • решетки и фильтры очистки;
  • воздуховод;
  • системы автоматики.

Выбор приточно-вытяжной установки осуществляется по производительности (куб.м воздуха в час) и мощности нагрева.

Калориферы для приточной вентиляции применяют в тех случаях, когда нужно обеспечить поступление во внутреннее помещение свежего воздуха извне при низких температурах. Летом наладить воздухообмен в жилых домах и на производственных предприятиях достаточно просто: при установке приточного вентилятора нужно только рассчитать его мощность для конкретной площади. Если же воздух снаружи холодный, то его прямое поступление внутрь здания ведёт к потере тепла.

Сбалансировать разницу температур, при этом освежая воздух, можно при помощи калорифера, который устанавливается непосредственно в системе вентиляции. Приходящий с улицы воздушный поток достигает необходимых параметров, проходя через систему фильтрации, нагревающие и охлаждающие элементы. Кроме этого, регулируется и содержание влаги.

Конструкция и элементы

Приточная установка с водяным калорифером по своей конструкции может быть, как моноблочного (т. н. компактные приточные установки с водяным калорифером, когда все элементы находятся в едином корпусе), так и наборного или секционного типа (каждый компонент имеет свой корпус и эти корпуса последовательно соединены между собой с помощью креплений).

Корпус приточной установки с водяным нагревателем может быть как простой, т. е. не иметь тепло и шумоизоляции, так и теплоизолированный и шумоизолированный.

Рабочее колесо вентилятора может иметь клино-ременную передачу (последнее время применяется все реже и реже), либо прямую посадку на ось двигателя.

Приточная установка с водяным нагревом может иметь в своем составе некоторые их элементов, каждый из которых играет свою роль:

  • вентилятор – устройство, которое перемещает воздушный поток, т. е. подает его с улицы в обслуживаемые помещения.
  • Нагреватель – служит для подогрева наружного воздушного потока с помощью горячей воды (водяная приточная установка).
  • Охладитель — используется для охлаждения свежего воздушного потока с помощью фреона или воды.
  • Воздушный фильтр – служит для очистки свежего наружного воздуха от частиц пыли, запахов и даже микробов.
  • Шумоглушитель – нужен для снижения шума, который неизбежно появляется при работе приточной установки.
  • Воздушный клапан с сервоприводом – нужен для перекрытия подачи воздушного потока в вентиляционную машину.
  • Увлажнитель – необходим для увеличения влажности воздуха в помещении.
  • Бактерицидная секция — используется для обеззараживания приточного воздуха от микробов (см. каталог).
  • Система автоматики – служит для автоматического поддержания заданных пользователем параметров (это блок или шкаф управления, пульт, датчики, реле, приводы, регуляторы оборотов, смесительный узел и т. д.)

Методы обвязки

Обвязка вентиляционного обогревателя – это соединение воедино множества приборов и элементов, которые отвечают за подводку теплоносителя, регулирование температуры и т. д. В неё включается циркуляционный насос, термодатчик, фильтр, байпас, шаровые краны и клапан.

Принципиальная схема обвязки приточной вентиляции с водяным калорифером

Выбор клапана (трёхходовой или двухходовой) зависит от того, в каком помещении делается система вентиляции.

  • Двухходовой клапан поддерживает температуру, но никак не регулирует расход теплоносителя. Его устанавливают в помещениях, имеющих центральное отопление.
  • Трёхходовой клапан нужен там, где расход теплоносителя – вопрос лишних расходов (частных котельных, системах с бойлерами).

Пример расчета теплопотерь дома

Рассматриваемый дом располагается в городе Кострома, где температура за окном в наиболее холодную пятидневку достигает -31 градусов, температура грунта — +5оС. Желаемая температура в помещении — +22оС.

Рассматривать будем дом со следующими габаритами:

  • ширина — 6.78 м;
  • длина — 8.04 м;
  • высота — 2.8 м.

Величины будут использоваться для вычисления площади ограждающих элементов.

Для расчетов удобнее всего нарисовать план дома на бумаге, обозначив на нем ширину, длину, высоту здания, расположение окон и дверей, их габариты

Стены здания состоят из:

  • газобетона толщиной В=0.21 м, коэффициентом теплопроводности k=2.87;
  • пенопласта В=0.05 м, k=1.678;
  • облицовочного кирпича В=0.09 м, k=2.26.

При определении k следует использовать сведения из таблиц, а лучше — информацию из технического паспорта, поскольку состав материалов разных производителей может отличаться, следовательно, иметь разные характеристики.

Железобетон имеет наиболее высокую теплопроводимость, минераловатные плиты — наименьшую, поэтому их наиболее эффективно использовать в строительстве теплых домов

Пол дома состоит из следующий слоев:

  • песка, В=0.10 м, k=0.58;
  • щебня, В=0.10 м, k=0.13;
  • бетона, В=0.20 м, k=1.1;
  • утеплителя эковаты, B=0.20 м, k=0.043;
  • армированной стяжки, В=0.30 м k=0.93.

В приведенном плане дома пол имеет одинаковое строение по всей площади, подвальное помещение отсутствует.

Потолок состоит из:

  • минеральной ваты, В=0.10 м, k=0.05;
  • гипсокартона, B=0.025 м, k= 0.21;
  • сосновых щитов, В=0.05 м, k=0.35.

У потолочного перекрытия выходов на чердак нет.

В доме окон всего 8, все они двухкамерные с К-стеклом, аргоном, показатель D=0.6. Шесть окон имеют габариты 1.2х1.5 м, одно — 1.2х2 м, одно — 0.3х0.5 м. Двери имеют габариты 1х2.2 м, показатель D по паспорту равен 0.36.

Особенности конструкции приточных вентиляций

Основным предназначением вентиляционной приточной системы заключается в подаче чистого воздуха в помещение. В зависимости от сложности конструкции она может состоять из самых различных элементов. Классическая система состоит из следующих конструктивных элементов:

  1. Клапан приточной вентиляции устанавливается для того, чтобы исключить вероятность попадания воздуха с улицы в помещение при выключении устройства. Этот конструктивный элемент важен при эксплуатации системы в зимний период при существенном снижении температуры. Клапан устанавливается также для защиты помещения от холодного воздуха и снега.
  2. На наружной части системы устанавливается решетка, которая не позволяет проникнуть в помещение различных механических загрязнений. Форма и размеры защитной сетки могут существенно отличаться. Тот момент, что сетка устанавливается снаружи, определяет привлекательный стиль ее оформления. Для защиты решетки от воздействия окружающей среды ее изготавливают из нержавеющей стали. Толщина сетки может существенно отличаться, от чего зависит прочность конструкции.
  3. Очистительные фильтры позволяют поддерживать качество подаваемого воздуха на довольно высоком уровне. Фильтры могут существенно отличаться по достаточно большому количеству признаков. Примером назовем то, что некоторые могут устанавливаться только для отсеивания песка, другие даже бактерий. Фильтры могут изготавливаться из самых различных материалов, некоторые изготавливаются при применении активного угля, другие представлены сеткой с малой перфорацией.
  4. Некоторые системы могут проводить нагрев воздуха, для чего устанавливается специальный нагреваемый элемент. В зимний период нагревательный элемент позволяет существенно повысить комфорт в помещении. Кроме этого нагрев может проводится в автоматическом режиме или в зависимости от настроек терморегулятора. Единственным недостатком калорифера можно назвать высокое электропотребление. Если фильтр не справляется с поставленной задачей, то срок эксплуатации нагревательного элемента может существенно снизиться: мусор и насекомые покроют нагреватель, образуя налет, после чего он перегревается.
  5. Вентилятор устанавливается в качестве активного элемента, за счет которого происходит нагнетание воздуха. Как правило, вентилятор защищается с обеих сторон, так как попадание крупного объекта может привести к деформации вентилятора.
  6. Вентилятор получает вращение от установленного электрического двигателя. Его основными параметрами является потребительская мощность и количество оборотов в минуту. Чем больше потребительская мощность, тем выше энергетические затраты.
  7. Приточная система вентиляции имеют элементы, которые предназначены для поглощения вибрации и звука. Изоляционные материалы позволяют сделать систему тихой, за счет чего повышается комфорт в помещении.

Кроме этого не стоит забывать о трубопроводе, по которому проводится подача воздуха. Они могут имеют круглое или прямоугольное сечение, изготавливаться при использовании различного металла.

Выбор приточной установки

Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел Расчет сопротивления сети).

Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.

Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м². 

Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.

Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.

После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:

  1. Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
  2. «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
  3. Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
  4. Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий