ГОСТы и СНИПы по теплоизоляции и отоплению

Системы отопления

6.3.1. В отапливаемых помещениях должна поддерживаться нормируемая температура воздуха.

6.3.2. В зданиях, где отсутствует система отопления допускается использовать локальное отопление на рабочих местах и ремонте оборудования.

6.3.3. Лестничные пролеты можно не отапливать в случаях, предусмотренных положением СНиП.

6.3.4

Отопление проектируется с учетом равномерного нагревания
и, принимая во внимание расходы тепла на нагревание воздуха, материалов, оборудования и прочего. За единицу принимают тепловой поток 10 Вт на 1 кв

м.

В параграфе 6.4 рассмотрены все требования к трубопроводам отопления,
где их можно проложить, где нельзя, регламентируют способы прокладки, закладывают в проект срок службы. Указывают допустимые нормы погрешности уклонов прокладываемых труб воды, пара и конденсата при различных условиях направления движения пара и скорости воды.

В параграфе 6.5 рассматривается все, что касается отопительных приборов и арматуры
, какие радиаторы можно устанавливать, схемы подключения, места расположения, расстояние от стен.

Параграф 6.6 рассматривает все вопросы, связанные с печным отоплением
: в каких зданиях оно допускается, какие требования к печам, температуре их поверхностей, сечениям и высоте дымовых труб.

Виды теплоснабжения многоквартирных домов

Несмотря на то, что отопление и охлаждение жилых помещений по сути являются различными системами в современных домах, они могут быть объединены в единый комплекс. Однако в настоящее время это все еще редкость, так как теплоснабжение большинства домов осуществляется по старым технологиям.

Больше всего распространено водяное отопление, как одно из самых адаптированных к различным типам строений – жилых, административных и производственных. При его проектировании нужно учитывать такие особенности:

  • Скорость остывания теплоносителя
    . Для однотрубной системы степень нагрева радиаторов, находящихся на последних участках схемы будет значительно ниже, чем у первых;
  • Гидравлическое сопротивление
    . Чем сложнее магистраль, тем большее сопротивление встречает горячая вода при прохождении по трубам. Поэтому необходима мощная насосная станция для создания циркуляции.
  • Эксплуатационные свойства воды, труб и радиаторов
    . В частности – необходима промывка системы отопления жилого дома для сохранения текущих параметров теплоснабжения.

До недавнего времени единственным вариантом организации отопления являлась централизованная система распределения горячей воды. Она ею же остается и до сих пор.

Централизованное отопление здания

Суть центрального распределения теплоносителя по нескольким домам заключается в создании схемы: котельная-распределительные узлы-потребители

Для нее важно учитывать описанные стандарты отопления жилых помещений, так как высока вероятность тепловых потерь при прохождении горячей воды по коммуникациям

Для подобного отопления жилого многоквартирного дома свойственны как преимущества, так и недостатки. Последних, увы, больше. Поэтому стараются переходить на индивидуальные схемы теплоснабжения. Но сделать это в настоящее время проблематично из-за сложностей на законодательном уровне.

Анализируя централизованное отопление жилых домов можно выявить ряд особенностей эксплуатации:

  • Потребитель не может напрямую влиять на степень нагрева воды. Максимум, что он может сделать – уменьшить ее приток в конкретный радиатор;
  • Затруднения в монтаже приборов учета тепла. В каждой квартире может быть от 2-х до 5-ти распределительных стояков, на которые необходимо установить счетчики;
  • Даты включения и отключения отопления и охлаждения жилых помещений. На практике они не зависят от текущих погодных условий.

Нужно учитывать, что для качественного отопления лестничных клеток жилых домов необходимо обеспечить должный уровень теплоизоляции. За это ответственный ЖЭК или аналогичная ей организация. Поэтому для создания по-настоящему эффективного теплоснабжения в многоквартирном доме иногда жильцам приходится прилагать массу усилий.

Автономное теплоснабжение дома

Можно ли сделать отопление жилого дома своими руками? На первый взгляд эта задача является сложной. В особенности это касается зданий старого типа, у которых в проектной документации предусмотрено централизованное теплоснабжение.

Однако постепенно ситуация изменяется и система индивидуального отопления жилого дома уже не является большой редкостью. Он отличается от традиционной большим выбором способов отопления, снижением расходов на энергоноситель и возможностью включения (выключения) в зависимости от внешних факторов.

При проектировании подобных систем учитываются нормативы отопления жилых помещений, о которых было сказано выше. Это необходимо при сдаче дома в эксплуатацию. Также следование этим нормам дает гарантию создания комфортных условий проживания для жильцов дома.

Есть несколько вариантов отопления жилого дома своими руками:

  • Водяное теплоснабжение
    . В качестве источника нагрева воды могут служить газовые, электрические или твёрдотопливные котлы. Последние применяются редко в системе индивидуального отопления жилого дома, так как для них нужно обустраивать отдельную котельную;
  • Воздушное
    . Оно совмещается с отоплением и охлаждением жилых квартир и помещений. Для этого требуется специальная климатическая установка, которая подключается к системе воздуховодов. Один из лучших вариантов для промышленных помещений;
  • Паровое
    . Используется крайне редко в системах отопления многоквартирного жилого дома. Несмотря на дорогостоящее оборудование его КПД является одним из самых высоких среди рассмотренных.

Однако при этом надо правильно выбрать схему промывки системы отопления жилого дома. Если в централизованной она осуществляется в основном гидродинамическим способом, то в данном случае можно применить и химический. Важным моментом является безопасность воздействия химических препаратов на отопительные компоненты – трубы и радиаторы.

Обеспечение теплом многоквартирных домов централизованная система отопления

При этом отклонения от заданного режима температуры воды, поступающей в тепловую сеть, на источнике теплоты предусматриваются не более +/- 3%;

В силу п. 9.2.1 Правил N 115 отклонение среднесуточной температуры воды, поступившей в системы отопления, вентиляции, кондиционирования и горячего водоснабжения, должно быть в пределах 3% от установленного температурного графика. Среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 5%.

Давление и температура теплоносителя, подаваемого на тепло потребляющие энергоустановки, должны соответствовать значениям, установленным технологическим режимом (п.4 Правил N 115).

В соответствии с п. 107 Правил о коммерческом учете тепловой энергии, теплоносителя, утвержденныхПостановлением Правительства РФ от 18.11.2013 N 1034 (далее Правила N 1034) контролю качества теплоснабжения подлежат следующие параметры, характеризующие тепловой и гидравлический режим системы теплоснабжения теплоснабжающих и тепло сетевых организаций:

а) при присоединении тепло потребляющей установки потребителя непосредственно к тепловой сети:

давление в подающем и обратном трубопроводах;

температура теплоносителя в подающем трубопроводе в соответствии с температурным графиком, указанным в договоре теплоснабжения;

б) при присоединении тепло потребляющей установки потребителя через центральный тепловой пункт или при непосредственном присоединении к тепловым сетям:

давление в подающем и обратном трубопроводе;

перепад давления на выходе из центрального теплового пункта между давлением в подающем и обратном трубопроводах;

соблюдение температурного графика на входе системы отопления в течение всего отопительного периода;

давление в подающем и циркуляционном трубопроводе горячего водоснабжения;

температура в подающем и циркуляционном трубопроводе горячего водоснабжения;

в) при присоединении тепло потребляющей установки потребителя через индивидуальный тепловой пункт:

давление в подающем и обратном трубопроводе;

соблюдение температурного графика на входе тепловой сети в течение всего отопительного периода.

Контролю качества теплоснабжения подлежат следующие параметры, характеризующие тепловой и гидравлический режим потребителя (п. 108 Правил N 1034):

а) при присоединении тепло потребляющей установки потребителя непосредственно к тепловой сети:

температура обратной воды в соответствии с температурным графиком, указанным в договоре теплоснабжения;

расход теплоносителя, в том числе максимальный часовой расход, определенный договором теплоснабжения;

расход подпиточной воды, определенный договором теплоснабжения;

б) при присоединении тепло потребляющей установки потребителя через центральный тепловой пункт, индивидуальный тепловой пункт или при непосредственном присоединении к тепловым сетям:

температура теплоносителя, возвращаемого из системы отопления в соответствии с температурным графиком;

расход теплоносителя в системе отопления;

расход подпиточной воды согласно договору теплоснабжения.

Порядок проведения расчётов

Без выполнения расчётов нельзя выбрать оптимальный материал, определить подходящую толщину. Без этого невозможно определить, какой плотностью будет обладать тепловая изоляция оборудования и трубопроводов. Среди факторов, оказывающих влияние на конечный результат подсчётов:

  • проведение тепла.
  • Способность защищать от деформаций.
  • Воздействия механического типа.
  • То, какой является температура на изолируемых поверхностях.
  • Вибрация на оборудовании и возможность его появления.
  • Температурный показатель в окружающей среде.
  • Предел по допустимой нагрузке.

Не обойтись и без учёта нагрузки, которая возникает при взаимодействии оборудования или трубопроводов с окружающим грунтом и транспортными средствами, которые проходят по поверхности. Специальные формулы используются для любых систем по передаче тепла, которые бывают стационарными, нестационарными.

Представляем серию формул для самостоятельного расчета толщины теплоизоляции.

Расчёт для теплоизоляции искусственно адаптируется ко всем условиям эксплуатации, характерным для того или иного и трубопровода или оборудования. Сами условия формируются при участии:

  1. Строительных материалов для подготовки к сменам времён года.
  2. Влажности, способствующей ускорению теплообмена.

Профессиональные компании предоставляют исполнителям инженерные данные для будущего строительства. Какие именно требования оказывают наибольшее влияние на выбор подходящих изоляционных покрытий?

  • Теплопроводность.
  • Звукоизоляция.
  • Возможность поглощать или отталкивать воду.
  • Уровень паропроницаемости.
  • Негорючесть.
  • Плотность.
  • Сжимаемость.

Для чего нужны нормы СНиП

Всё эти нормы разрабатывались и используются для того, чтобы избежать техногенных катастроф, в виде взрывов газа, трещин стен, усадки здания, замыкания электрической проводки, обвала стен и потолков и прочего. Что касается непосредственно отопительной системы, то соблюдение норм и правил, изложенных в СНиП 41−01−2003 очень актуально для поддержания и влажности воздуха в помещении, безопасного для здоровья человека.

Допустим, вы хотите установить радиаторы в своей комнате. Существует три способа установки радиаторов: боковое, диагональное, нижнее подключение . Выбрав схему можно приступить к установке, помня все рекомендации СНиП

и завода — изготовителя:

Монтаж отопительных устройств

также регламентируется СНиП.

Рассматривая жилые строения, можно поделить их на типовые и индивидуальные. Типовые — это образцы-шаблоны, которые демонстрируют готовые решения, где разработаны ключевые моменты. Их применяют при масштабных застройках.

В таких заготовках вносят незначительные корректировки по локальным условиям. К примеру, ориентацию на местности или место подключения к сетям.

А особенный дом, с уникальными планировками и фасадами, с личными пожеланиями и задумками называют индивидуальным.

Также производится разделение на многоквартирные и одноквартирные дома.

Многоквартирными называют дома, располагающие за пределами квартирных границ совместными помещениями и инженерией.

Сюда же причисляют интернаты, общежития и гостиничные комплексы. Нередко в высотках встречаются иные нежилые объекты: паркинги, торговые точки, организации сферы услуг и прочие.

Для чего необходимы нормы СНиП?

Все правила и нормы были разработаны и использованы в целях предотвращения техногенных катастроф. Например, усадки здания, трещин в стене, взрыва газа, обвалов стен, замыкания электропроводки и т.д.

Для того чтобы в помещении поддерживалась оптимальная температура и влажность воздуха в доме, которая является безопасной для здоровья человека, должны соблюдаться нормы и правила, указанные в СНиП 41-01-2003. Для установки радиаторов отопления может быть использован 1 из 3 способов подключения: диагональное, боковое и нижнее. Начать установку прибора можно после изучения всех рекомендаций, указанных в СНиП, а также завода изготовления:

  1. Для того чтобы теплый воздух поступал в помещение без каких-либо препятствий следует установить радиаторы на 10 см ниже подоконника в соответствии с нормами.
  2. Для нормального распределения теплого потока необходимо оставить промежуток, который составляет меньше ¾ глубины радиатора отопления.
  3. Для того чтобы не затруднять прохождение воздуха, необходимо установить радиатор на расстоянии от пола 12 см. Кроме этого такое расстояние позволяет проводить уборку под прибором. При другом значении увеличится перепад температуры по высоте.
  4. От стены радиатор должен находиться на расстоянии 2 см и более.
  5. В первую очередь следует разместить кронштейны, на которые будет вешаться прибор.
  6. Кронштейнов должно быть 3 и более.
  7. Для надежности крепления применяется цементная смесь или дюбели.
  8. Следует установить переходники, кран Маевского, заглушки и т.д.
  9. Теперь можно приступить к установке радиатора отопления.
  10. Соединение радиатора и труб системы отопления.
  11. Далее требуется установить автоматический воздухоотводчик.

Соблюдая нормы и правила СНиП получится подключить любую систему отопления верно.

ГОСТы

Индекс НазваниеАннотация

Документ

ГОСТ 31311-2005

Действующий.

Приборы отопительные. Общие технические условия.Стандарт распространяется на отопительные приборы, предназначенные для эксплуатации в системах водяного отопления зданий и сооружений различного назначения.

Открыть

ГОСТ 27179-86

Действующий.

Приборы отопительные аккумуляционные электрические бытовые. Требования безопасности и методы испытаний.Стандарт распространяется на электрические аккумуляционные отопительные приборы для помещений бытового или подобного назначения, включая и печи, содержащие дополнительные нагревательные элементы прямого нагрева.

Открыть

ГОСТ 27734-88

Действующий.

Приборы отопительные непосредственного действия электрические бытовые. Методы функциональных испытаний.Стандарт распространяется на электрические отопительные приборы непосредственного действия (в дальнейшем — приборы) для помещений бытового и подобного назначения, предназначенных для нужд народного хозяйства и экспорта.

Открыть

ГОСТ Р 53583-2009

Действующий.

Приборы отопительные. Методы испытанийСтандарт распространяется на отопительные приборы, предназначенные для эксплуатации в системе водяного отопления зданий различного назначения, и устанавливает методы испытаний по определению основной эксплуатационной характеристики — номинального теплового потока, а также зависимости теплового потока от расхода теплоносителя и схем движения теплоносителя в приборе.

Открыть

ГОСТ 28669-90

Действующий.

Приборы отопительные комнатные электрические аккумуляционного типа. Методы измерений функциональных характеристик.Стандарт распространяется на отопительные комнатные электрические приборы аккумуляционного типа, предназначенные для обогрева помещения. Настоящий стандарт не распространяется на отопительные приборы, являющиеся частью конструкции здания, встроенные в нагревательные устройства и устройства центрального отопления, в установки для обогрева пола.

Открыть

Системы отопления


нормируемая температура воздуха.

6.3.2. В зданиях, где отсутствует система отопления допускается использовать локальное отопление на рабочих местах и ремонте оборудования.

6.3.3. Лестничные пролеты можно не отапливать в случаях, предусмотренных положением СНиП.

6.3.4

Отопление проектируется с учетом равномерного нагревания и, принимая во внимание расходы тепла на нагревание воздуха, материалов, оборудования и прочего. За единицу принимают тепловой поток 10 Вт на 1 кв

м.

В параграфе 6.4 рассмотрены все требования к трубопроводам отопления, где их можно проложить, где нельзя, регламентируют способы прокладки, закладывают в проект срок службы. Указывают допустимые нормы погрешности уклонов прокладываемых труб воды, пара и конденсата при различных условиях направления движения пара и скорости воды.

В параграфе 6.5 рассматривается все, что касается отопительных приборов и арматуры, какие радиаторы можно устанавливать, схемы подключения, места расположения, расстояние от стен.

Параграф 6.6 рассматривает все вопросы, связанные с печным отоплением: в каких зданиях оно допускается, какие требования к печам, температуре их поверхностей, сечениям и высоте дымовых труб.

Использование различных утеплителей

В документации СНиП детально описано, чем и как утеплить правильно сооружения различного назначения. Утепление фасада, согласно нормам, можно осуществлять с использованием различных теплоизоляционных материалов, при этом каждый из них должен соответствовать определенным параметрам.

Пенопласт

Чтобы утепление с использованием пенопласта соответствовало нормам СНиП, следует очень внимательно относится к выбору материала, так как не все плиты отвечают требованиям. В документах прописаны пенопластовые плиты, которые имеют:

  • плотность не менее 100 кг/м³;
  • удельную теплоемкость от 1,26 кДж/(кг°С);
  • теплопроводность не больше 0,052.

Также ограничивают возможность применения пенопласта для утепления его горючесть, что следует учитывать, если к зданию предъявляются повышенные требования пожарной безопасности.

Пенополипропилен

К такому утеплителю фасадов, как вспененный полипропилен, в СНиП точных требований не прописано, поскольку это достаточно новый теплоизоляционный материал. Как показывает практика, этот материал чаще всего применяют для обеспечения гидроизоляции.

Низкий коэффициент теплопроводности позволяет его использовать и для утепления. Но для нанесения потребуется специализированное оборудование, что существенно усложняет процесс нанесения пенополипропилена на поверхность.

Минеральные ваты разных классов

Используя минеральную вату, легче всего добиться соответствия нормам СНиП. Для фасадов не используются мягкие, при этом нормативная документация позволяет производить утепление полужесткими и жесткими плитами.

Второй вариант рекомендовано применять при работе с оштукатуренной поверхностью. Полужесткая минеральная вата является оптимальным выбором для кирпичных стен и ячеистобетонных.

Пенополистирол, пенополиуретан – экструдированные материалы

Утепление любыми материалами из этой категории разрешено только для подвальных помещений и чердаков. Это связано с особыми качественными характеристиками утеплителей.

Кроме того, работы сопряжены с рядом трудностей, в частности нанесение вспененных материалов, и требуют соблюдения техники безопасности и использования средств индивидуальной защиты.

Пенобетон, газобетон

Согласно строительным нормам, правилам, установленным СНиП, использование таких утеплителей актуально при теплоизоляции промышленных объектов.

Безопасность при использовании


органов госнадзора по безопасности

4.4.2. Температура теплоносителя для систем отопления и теплоснабжения воздухонагревателей приточными установками в здании должна быть принята ниже на 20˚С температуры самовоспламенения материалов, которые находятся в помещении, учитывая положение 4.4.5. и не более максимального допуска согласно приложению Б.

Если в системе отопления температура воды выше 105˚С, то предусматривают меры по предотвращению закипания воды.

4.4.3. Температуре поверхности отопительного оборудования доступной для граждан части не должна быть выше 75˚С, в противном случае её следует оградить для предотвращения ожогов, особенно, в детских учреждениях.

4.4.4. Тепловая изоляция отопительно-вентиляционного оборудования, трубопроводов, систем внутреннего теплоснабжения, воздуховодов дымоотводов должна предусматривать:

  • предупреждение от ожогов;
  • обеспечение потерь тепла менее допустимых норм;
  • исключение конденсации влаги;
  • исключение замерзания теплоносителя в трубопроводах, которые прокладываются в неотапливаемых зонах или специально охлаждаемых помещениях;
  • температура поверхностного слоя изоляции должна быть менее 40˚С, согласно СНиП 41−03.

4.4.5 Прокладывать и способствовать пересечению в одном канале трубопровода внутреннего теплоснабжения жидкости, пара и газа с температурой вспышки паров 170˚С и менее не допустимо.

4.4.6 Температура воздуха при выходе из системы воздушного отопления не должна превышать 70˚С. Расчет ведется с учетом пункта 5.6. Также она должна быть ниже минимум на 20˚С, чем температура воспламеняющихся газов, пыли, паров, выделяющихся в помещении.

Теплоизоляция стен снип

Согласно П3-2000 к СниП 3.03.01-87 «Проектирование и устройство тепловой изоляции ограждающих конструкций жилых зданий», теплоизоляция зданий должна производиться снаружи здания. Утепление изнутри возможно только в многоэтажках в отдельных квартирах при соблюдении специальных требований со стороны органов госуправления архитектуры и градостроительства.

При этом необходимо учитывать разработку конструктивных мероприятий, которые могут обеспечить образование конденсата на стыках теплоизоляционных материалов там, где слой утеплителя пересекается с элементами перекрытий и внутренними частями стен, что требует подтверждение расчетом температур­ных полей.

На данный момент, когда в России вступили в силу стандарты СНИП II 3 79. Они определяют новый норматив для утепления стен, согласно которых кирпичная стена должна иметь минимальную толщину около 2 метров. Конечно же, строительство домов с такой толщиной стен является экономически невыгодным, в результате чего многие строительные компании стали подбирать альтернативу кирпичу. Новый стройматериал должен был обладать такими свойствами, как высокий уровень теплоизоляции, экологическая чистота и длительный срок службы.

Именно пенобетон удовлетворяет этим требованиям, в результате чего этот материал становится все более популярным.

Для примера мы произведем расчет требуемой толщины наружных стен, остановив свой выбор на кирпиче-пенобетоне или оштукатуренном пенобетоне, а также нормативах СНИП II 3 79.

Пенобетон может иметь различную плотность, но наиболее часто используемыми являются 600, 800 и 1000 кг/куб. м.

Что необходимо знать для проведения расчета:

1. В первую очередь необходимо знать теплотехнические свойства стройматериалов стены. Каждый тип материала обладает индивидуальными теплотехническими свойствами. Коэффициент сопротивления теплопередачи и теплопроводность необходимы при проведении расчетов потерь тепла, демонстрируя потери мощности на один квадратный метр внешней части теплоизоляционной конструкции, толщина которой составляет 1 м, а разница наружной и внутренней температуры составляет 1 градус (kt=ватт/(m х t)). Большинство характеристик утеплительных материалов описаны в СНИП 2-3-79. О технических характеристиках базальтовой ваты читайте в другой статье.

2. ГСОП (отопительный период в градусосутках). Этот коэффициент может быть рассчитан при помощи формулы СНИП 2-3-79. Его можно узнать из специального справочника.

3. Сопротивление теплопередаче. Этот показатель основан на ГСОП и может быть взят в СНИП. В рассматриваемом нами случае ГСОП равен 6000, а коэффициент сопротивления теплопередаче должен составлять 3,5 град. С х кв.м./Вт и более.

В результате наши расчеты показывают, что рассматриваемая нами стена должна обладать суммарным сопротивлением процессу теплопередачи с показателем от 3,5 (град. С х кв.м./Вт). Учитывая тот факт, что сопротивление теплопередачи каждого слоя отличается, поэтому согласно СНИП 2-3-79, он вычисляется в виде суммы сопротивлений всех слоев.

Кроме того, расчеты требуют знания коэффициента теплопроводности Вт / (м х град. С) всех материалов, которые были использованы при возведении стен. На сайте вы найдете информацию о теплопроводности базальтовой ваты.

Давайте рассмотрим расчет на примере слоя пенобетона для двух типов стен:

В состав первой стены входят облицовочный кирпич (250 х 120 х 65) с пенобетоном (х мм) и штукатурка (20 мм). При обычной кирпичной кладке ее толщина составляет 120 мм. Путем деления ее толщины (в метрах) на указанную в СНИП 2-3-79 теплопроводность 012/0,56 можно вычислить коэффициент сопротивления теплопередаче кирпичной кладки – 0,21. Учитывая толщину штукатурного слоя (20 мм), получаем коэффициент сопротивления теплопередаче – 0,02/0,58=0,03.

Что касается слоя пенобетона, то учитывая его плотность рассчитаем его следующим способом:

При плотности пенобетона 600 кг/куб. м и формулы х=(3,5-0,21-0,03) х 0,14 мы получаем 450 мм

Вторая стена включает штукатурный слой (20 мм), пенобетон (х мм) и снова штукатурки (20 мм). Общая толщина штукатурки составляет 40 мм, а, значит, она обладает коэффициентом сопротивления теплопередаче 0,06.

В результате, получаем толщину пенобетона плотностью 600 кг/куб. м: х=(3,5-0,06) х 0,14 = 480 мм. Следует также отметить, что коэффициент пенобетона 0.14 при плотности 600 является показателем в его сухом состоянии.

Независимо от выбранных материалов, все расчеты должны производиться на основе действующих правил и нормативов. Только так можно достичь максимального качества теплоизоляции за счет точности произведенных расчетов.

Согласно разделу 4 СП 61.13330.2012

4.1 Теплоизоляционная конструкция должна обеспечивать параметры теплохолодоносителя при эксплуатации, нормативный уровень тепловых потерь оборудованием и трубопроводами, безопасную для человека температуру их наружных поверхностей.

4.2 Конструкции тепловой изоляции трубопроводов и оборудования должны отвечать требованиям:

  • энергоэффективности — иметь оптимальное соотношение между стоимостью теплоизоляционной конструкции и стоимостью тепловых потерь через изоляцию в течение расчетного срока эксплуатации;
  • эксплуатационной надежности и долговечности — выдерживать без снижения теплозащитных свойств и разрушения эксплуатационные температурные, механические, химические и другие воздействия в течение расчетного срока эксплуатации;
  • безопасности для окружающей среды и обслуживающего персонала при эксплуатации и утилизации.

Материалы, используемые в теплоизоляционных конструкциях, не должны выделять в процессе эксплуатации вредные, пожароопасные и взрывоопасные, неприятно пахнущие вещества, а также болезнетворные бактерии, вирусы и грибки, в количествах, превышающих предельно допустимые концентрации, установленные в санитарных нормах.

4.3 При выборе материалов и изделий, входящих в состав теплоизоляционных конструкций для поверхностей с положительными температурами теплоносителя (20 °С и выше), следует учитывать следующие факторы:

  • месторасположение изолируемого объекта СП 131.13330;
  • температуру изолируемой поверхности;
  • температуру окружающей среды;
  • требования пожарной безопасности;
  • агрессивность окружающей среды или веществ, содержащихся в изолируемых объектах;
  • коррозионное воздействие;
  • материал поверхности изолируемого объекта;
  • допустимые нагрузки на изолируемую поверхность;
  • наличие вибрации и ударных воздействий;
  • требуемую долговечность теплоизоляционной конструкции;
  • санитарно-гигиенические требования;
  • температуру применения теплоизоляционного материала;
  • теплопроводность теплоизоляционного материала;
  • температурные деформации изолируемых поверхностей;
  • конфигурация и размеры изолируемой поверхности;
  • условия монтажа (стесненность, высотность, сезонность и др.);
  • условия демонтажа и утилизации.
  • Теплоизоляционная конструкция трубопроводов тепловых сетей подземной бесканальной прокладки должна выдерживать без разрушения:
  • воздействие грунтовых вод;
  • нагрузки от массы вышележащего грунта и проходящего транспорта.
  • При выборе теплоизоляционных материалов и конструкций для поверхностей с температурой теплоносителя 19 °С и ниже и отрицательной температурой дополнительно следует учитывать относительную влажность окружающего воздуха, а также влажность и паропроницаемость теплоизоляционного материала.

4.4 В состав конструкции тепловой изоляции для поверхностей с положительной температурой в качестве обязательных элементов должны входить:

  • теплоизоляционный слой;
  • покровный слой;
  • элементы крепления.

4.5 В состав конструкции тепловой изоляции для поверхностей с отрицательной температурой в качестве обязательных элементов должны входить:

  • теплоизоляционный слой;
  • пароизоляционный слой;
  • покровный слой;
  • элементы крепления.

Пароизоляционный слой следует предусматривать также при температуре изолируемой поверхности ниже 12 °С. Устройство пароизоляционного слоя при температуре выше 12 °С следует предусматривать для оборудования и трубопроводов с температурой ниже температуры окружающей среды, если расчетная температура изолируемой поверхности ниже температуры «точки росы» при расчетном давлении и влажности окружающего воздуха.

Необходимость установки пароизоляционного слоя в конструкции тепловой изоляции для поверхностей с переменным температурным режимом (от «положительной» к «отрицательной» и наоборот) определяется расчетом для исключения накопления влаги в теплоизоляционной конструкции.

Антикоррозионные покрытия изолируемой поверхности не входят в состав теплоизоляционных конструкций.

4.6 В зависимости от применяемых конструктивных решений в состав конструкции дополнительно могут входить:

  • выравнивающий слой;
  • предохранительный слой.

Предохранительный слой следует предусматривать при применении металлического покровного слоя для предотвращения повреждения пароизоляционных материалов.

Документация общего характера

ГОСТ 33160-2014 «Тепловая изоляция. Физические величины и определения»

ГОСТ 16381-77-1992 «Материалы и изделия строительные теплоизоляционные. Классификация и общие технические требования»

ГОСТ 4.201-79 «Система показателей качества продукции. Строительство. Материалы и изделия теплоизоляционные. Номенклатура показателей»

ГОСТ 23499-2009 «Материалы и изделия звукоизоляционные и звукопоглощающие строительные. Общие технические условия»

ГОСТ 17177-94 «Материалы и изделия строительные теплоизоляционные»

СП 23-101-2004 «Проектирование тепловой защиты зданий»

СНиП 3-04-01-87 «Изоляционные и отделочные покрытия»

ГОСТ Р 52953-2008 «Материалы и изделия теплоизоляционные»

СНиП 23-01-99-2003 «Строительная климатология»

СНиП ll-3-79-2005 «Строительная теплотехника»

СНиП 23-02-2003 «Тепловая защита зданий»

Это интересно: Как выбрать недорогой и качественный перфоратор для домашних работ — практические советы

Тепловая изоляция трубопроводов и её суть

Применяя изоляцию теплового вида, производители облегчают себе осуществление тех или иных процессов по технологии. Это решение широко используется во многих сферах промышленности:

  1. Металлургической.
  2. Пищевой.
  3. Нефтеперерабатывающей.
  4. Химической.

Но большего внимания изоляция удостаивается от представителей энергетики. В данном случае объекты теплоизоляции имеют вид:

  • Труб для дыма.
  • Устройств по обмену тепла.
  • Аккумуляторных баков, где хранится горячая вода.
  • Турбин с газом и паром.

Тепловая изоляция трубопроводов используется на аппаратах, которые располагаются как в вертикальной, так и в горизонтальной плоскостях. Это актуальное решение для теплоизоляции оборудования, например резервуаров, в которых хранится вода вместе с теплоносителями. Ряд жёстких требований предъявляется к эффективности изоляционных покрытий.

Снабжение воздуха

Для создания воздушного пространства, которое соответствует гигиеническим и технологическим требованиям,
устанавливают требуемые кратности воздухообменов. Для ряда помещений она найдется в сводах правил, для остальных – определяется расчетным путём.

В целях экономии и обеспечения бесперебойности работы вентиляция применяется с естественной тягой. Поступление воздуха при этом обеспечивается приточными устройствами инфильтрации воздуха
и через неплотности дверей. Направление движения воздушных масс организовывается окон к санузлу, ванной и кухне.

С воздухоснабжением как всего дома, так и квартирного
пространства сталкиваются не только работники из организаций по строительству или эксплуатации здания, но и обычные жильцы. Например, со временем пропала тяга в каналах. Или после монтажа пластиковых окон замечен приток из общедомового коридора. Разумеется, квартиросъёмщик ищет решение проблемы. И непременно необходимо учесть, что существует руководящая база нормативов, которая регулирует эту область.

Перед реализацией в действительность комплекс проектных документов
на объект обязательно проходит государственную или независимую экспертизу на соблюдение требований Госстроя России. И только после положительного заключения разрабатывается комплекс рабочих чертежей.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий