Тепловая мощность: эффективность нагревателей и определение, расчёт баланса отопления и формулы, рекомендации

1 Простые приёмы расчёта

Чтобы отопление в доме было эффективным и качественным, а также были созданы комфортные условия проживания, система должна выполнять две важные функции. Они очень похожи между собой и мало чем отличаются:

  1. 1. Оптимальная температура воздуха во всём помещении на постоянной основе. Под потолком воздух будет теплее, но разница должна быть незначительная. Согласно общепринятым правилам, оптимальной температурой в помещении считается около +20 градусов Цельсия. Система отопления должна иметь возможность прогреть определённый объём воздуха до необходимой температуры в помещении. Если говорить о юридической стороне вопроса, то все требуемые параметры прописаны в государственных стандартах, а в частности в ГОСТ 30494–96 .
  2. 2. Компенсирование теплопотерь через элементы здания. К сожалению, тепловые потери являются серьёзным соперником системы отопления. Хотя их и можно минимизировать с помощью хорошей теплоизоляции, но полностью устранить не получится.

Разумеется, чтобы система отопления справлялась со своей основной задачей, она должна иметь запас мощности с учётом теплопотерь. Кроме этого, мощность нужно выбирать с учётом площади помещения и его расположения в здании, а также в соответствии с другими требованиями.

Как правило, рассчитывать эти данные необходимо, начиная с каждой отдельной комнаты, после чего складывать все данные и добавлять 10% запаса для того, чтобы устройство не работало на своих пределах. При этом количество радиаторов в комнате после этого определить несложно, поскольку расчёты имеются по каждой из них.

Самый примитивный способ подсчёта — использование формулы:

Q = Sх 100, где:

  • Q — необходимое количество тепла для здания;
  • S — площадь помещения;
  • 100 — количество мощность в Вт на 1 кв. м.

помещения, а не от её квадратуры

Разумеется, что рассчитывать теперь нужно, отталкиваясь от мощности на один кубический метр, а не квадратный. Таким образом, для кирпичного дома будет достаточно 34 кВт на один кубический метр, а для панельного 41 кВт.

Результат можно получить более точный, так как здесь учитываются не только размеры площади помещения, но и в определённой степени тип стен.

С другой стороны, максимальная точность определяется совсем по-другому. Связано это с упущением многих нюансов, которые влияют на теплопотери.

Вычисления

Точное значение потерь тепла произвольным зданием вычислить практически невозможно. Однако давно разработаны методики приблизительных расчетов, дающих в пределах статистики достаточно точные средние результаты. Эти схемы вычислений часто упоминается как расчеты по укрупненным показателям (измерителям).

Строительный объект должен быть спроектирован таким образом, чтобы энергия, требуемая для охлаждения, была минимальной. В то время как жилые здания могут быть исключены из конструкционного спроса на энергию охлаждения, поскольку внутренние потери тепла минимальны, ситуация в нежилом секторе несколько отличается. В таких зданиях внутренние тепловые выгоды, которые необходимы для механического охлаждения, вызваны отличительной кладкой на общую тепловую выгоду. На рабочем месте также необходимо обеспечить гигиенический воздушный поток, который в значительной степени осуществляется принудительным образом с возможностью регулирования.

Наряду с тепловой мощностью часто возникает необходимость рассчитать суточный, часовой, годичный расход тепловой энергии или среднюю потребляемую мощность. Как это сделать? Приведем несколько примеров.

Часовой расход тепла на отопление по укрупненным измерителям вычисляется по формуле Qот=q*a*k*(tвн-tно)*V, где:

  • Qот — искомое значение к килокалориях.
  • q — удельная отопительная величина дома в ккал/(м3*С*час). Она ищется в справочниках для каждого типа зданий.

Такой дренаж также необходим в течение летнего периода, чтобы остыть из-за удаления тепла снаружи воздухом воздуха и требованием для возможного осушения. Затенение в виде накладных или горизонтально обитающих элементов является методом сегодня, но эффект ограничен временем, когда солнце высоко над горизонтом. С этой точки зрения наиболее важным методом является тушение наружных подъемников, конечно, в отношении дневного освещения.

Сокращение внутренних тепловых выгод несколько проблематично. Это также поможет уменьшить потребность в искусственном освещении. Производительность персонального компьютера неуклонно растет, но значительный прогресс был достигнут и в этой области. Потребность в охлаждении также представлена ​​строительными конструкциями, способными накапливать тепловую энергию. Такие конструкции особенно тяжелые строительные конструкции, такие как. бетонный пол или потолок, что также может вызвать внутреннее накопление шпоры, наружные стены или помещения.

  • а — коэффициент поправки на вентиляцию (обычно равен 1,05 — 1,1).
  • k — коэффициент поправки на климатическую зону (0,8 — 2,0 для разных климатических зон).
  • tвн — внутренняя температура в помещении (+18 — +22 С).
  • tно — уличная температура.
  • V — объем здания вместе с ограждающими конструкциями.

Чтобы вычислить приблизительный годовой расход тепла на отопление в здании с удельным расходом в 125 кДж/(м2*С*сут) и площадью 100 м2, расположенном в климатической зоне с параметром GSOP=6000, нужно всего-то умножить 125 на 100 (площадь дома) и на 6000 (градусо-сутки отопительного периода). 125*100*6000=75000000 кДж, или примерно 18 гигакалорий, или 20800 киловатт-часов.

Также выгодным является использование специальных материалов с фазовым сдвигом при подходящей температуре. Для легких жилых зданий без охлаждения, где емкость аккумуляции минимальна, возникают проблемы с поддержанием температурных условий в летние месяцы.

С точки зрения конструкции кондиционера, но также и необходимости в энергии охлаждения, необходимо будет использовать точные, доступные методы расчета. В этом отношении можно предсказать особенно четкий расчет теплоотводов. Как уже было сказано, потребность в энергии охлаждения будет минимальной в нулевых зданиях. Некоторые здания нельзя охлаждать без охлаждения, а предоставление оптимальных параметров для теплового комфорта трудящихся, особенно в офисных зданиях, теперь является стандартным стандартом.

Чтобы пересчитать годичный расход в среднюю тепловую , достаточно разделить его на длину отопительного сезона в часах. Если он длится 200 дней, средняя тепловая мощность отопления в приведенном выше случае составит 20800/200/24=4,33 КВт.

Пример расчета тепловой мощности


Возьмем некое помещение 80 м2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.

Вначале высчитываем кубатуру: 80 х 2,5 = 200 м3. Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.

Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.

Подставляем в формулу мощности тепловых потерь цифры и перемножаем:

200 х 62 х 1,2 = 14880 ккал/ч.

Полученные килокалории переводим в киловатты, пользуясь конвертером:

  • 1 кВт = 860 ккал;
  • 14880 ккал = 17302,3 Вт.

Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.

Можем посчитать теплопотери в Вт на каждый м2 стен и потолка. Высота потолков известна 2,5 м. Дом 80 м2 – это может быть 8 х 10 м.

Умножаем периметр дома на высоту стен:

(8 + 10) х 2 х 2,5 = 90 м2 поверхности стены + 80 м2 потолок = 170 м2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.

Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.

Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.


Формула:

Q = S x (дельта)T / R:

  • Q– искомая величина теплопотерь дома в Вт;
  • S– площадь охлаждающих поверхностей в м2;
  • T– разница температур в градусах Цельсия;
  • R– тепловое сопротивление материала (м2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).

Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).

  • «S» в нашем случае = 170 м2, из них 80 м2 потолок и 90 м2 – стены;
  • T = 62 °С;
  • R– тепловое сопротивление.

Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:

R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).

В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.

Отопительную систему частного дома нужно устраивать с учетом экономии средств на энергоносители. Расчет системы отопления частного дома, а также рекомендации по выбору котлов и радиаторов – читайте внимательно.

Чем и как утеплить деревянный дом изнутри, вы узнаете, прочитав эту информацию. Выбор утеплителя и технология утепления.

Из таблицы коэффициентов теплопроводности (измеряется Вт / (м2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:

  • кирпич – 0,67;
  • пенопласт – 0,037;
  • опилки – 0,065.

Подставляем данные в формулу (R= H/ К.Т.):

  • R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м2 х К) / Вт;
  • R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м2 х К) / Вт;
  • R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м2 х К) / Вт;
  • R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м2 х К) / Вт.

Теперь можем приступить к расчету теплопотерь «Q»:

  • Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
  • Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
  • Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.

Можно обратить внимание, насколько большая разница получилась в первом и втором случае, хотя объём домов и температура за окном в первом и втором случае были совершенно одинаковыми. Всё дело в степени утомлённости домов (хотя, конечно, данные могли быть и иными, если бы мы рассчитывали пол и окна)

Как рассчитываются Гкал на горячую воду и отопление

Отопление рассчитывается по формулам, аналогичным формулам нахождения величины Гкал/ч.

Примерная формула подсчёта оплаты за тёплую воду в жилых помещениях:

P i гв = Vi гв * T х гв + (V v кр * Vi гв / ∑ Vi гв * T v кр)

Используемые величины:

  • P i гв – искомая величина;
  • V i гв – объём потребления горячей воды за определённый временной промежуток;
  • T х гв – установленная тарифная плата за горячее водоснабжение;
  • V v гв – объём затраченной энергии компанией, которая занимается её подогревом и поставкой в жилое/нежилое помещение;
  • ∑ V i гв – сумма потребления тёплой воды во всех помещениях дома, в котором производится расчет;
  • T v гв – тарифная плата за тепловую энергию.

В данной формуле не учитывается показатель атмосферного давления, поскольку он не существенно влияет на конечную искомую величину.

Формула приблизительная и не подходит для самостоятельного расчёта без предварительной консультации. Перед её использованием необходимо обратиться к местным коммунальным службам для уточнения и корректировки – возможно, они пользуются другими параметрами и формулами для расчёта.

Расчёт размера платы за отопление является очень важным, так как зачастую внушительные суммы не оправданы

Результат расчётов зависит не только от относительных температурных величин – на него напрямую влияют установленные правительством тарифы на потребление горячего водоснабжения и отопления помещений.

Вычислительный процесс значительно упрощается, если установить отопительный счётчик на квартиру, подъезд или жилой дом.

Стоит учитывать, что даже самые точные счётчики могут допускать погрешность при вычислениях. Также её можно определить по формуле:

E = 100 *((V1 – V2)/(V1 + V2))

В представленной формуле используются следующие показатели:

  • E – погрешность;
  • V1 – объём потребляемого горячего водоснабжения при поступлении;
  • V2 – потребляемая горячая вода на выходе;
  • 100 – вспомогательный коэффициент, преобразующий результат в проценты.

В соответствии с требованиями, средняя величина погрешности расчётного прибора составляет около 1 %, а максимально допустимая – 2 %.

Тепловые нагрузки

Тепловая нагрузка — количество тепла для восполнения теплопотерь здания (помещения), с учётом использования отопительных приборов в пиковых температурных режимах.

Мощность, совокупность мощностей обогревательных приборов, участвующих в обогреве здания, обеспечивающих комфортную температуру для проживания, ведения хозяйственной деятельности. Мощностей источников тепла должно хватать для поддержания температуры в самые холодные дни отопительного сезона.

Измеряется тепловая нагрузка в Вт, Кал/час, — 1Вт=859,845 Кал/ч. Расчёт — сложный процесс. Самостоятельно, без знаний, навыков выполнить сложно.

От проектирования нагрузки здания зависит внутренний тепловой режим. Ошибки негативно влияют на потребителей теплоэнергии, подключенных к системе. Наверное, каждый в холодные, зимние вечера, укутавшись в теплый плед, жаловался на ТеплоСети с холодными батареями — результат несоответствия с фактическими тепловыми режимами.

Тепловая нагрузка складывается с учётом количества отопительных приборов (радиаторных батарей) для поддержания тепла, с параметрами:

  • теплопотеря здания, которая складывается из показателей теплопроводимости стройматериалов коробки, кровли дома;
  • при вентилировании (принудительной, естественной);
  • водоснабжения горячей водой объекта;
  • дополнительные тепловые расходы (сауна, баня, хозяйственно-бытовые нужды).

При одинаковых требованиях к зданию, в разных климатических поясах нагрузка будет отличаться. Влияют: расположение относительно уровня моря, присутствие естественных преград холодных ветров, другие геологические факторы.

Считаем расход теплоты по квадратуре

Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.

Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:

Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:

  • Q – искомая величина нагрузки, Вт;
  • Sпом – квадратура комнаты, м²;
  • q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
  • k – коэффициент, учитывающий климат в районе проживания.

В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:

  • для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
  • угловые комнаты с одним световым проемом – 120 Вт/м²;
  • то же, с двумя окнами – 130 Вт/м².

Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:

Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.

Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).

Теплопоступления от людей.

Они поступают в окружающую среду в виде явной и скрытой теплоты. Явное тепло отдаётся окружающей среде в результате конвективного и лучистого теплообмена. Скрытое тепло – представляет теплосодержание водяных паров, испаряющихся с поверхности тела и лёгких человека.

Полное количество, выделяемой человеком теплоты зависит, в основном, от степени тяжести выполняемой работы и в меньшей мере от температуры помещения и теплозащитных свойств одежды. С повышением интенсивности работы и температуры окружающего воздуха увеличивается доля тепла, передаваемого в виде скрытого тепла испарения. При температуре воздуха 34°С всё тепло, выработанное организмом, отдаётся путём испарения.

Показатели тепловыделений человека во внешнюю среду даны в таблице, приведённой далее.

В этой связи можно высказать несколько замечаний:

  • вне зависимости от вида деятельности общее количество выделяемой телом тепловой энергии при низких температурах окружающей среды выше, чем при высоких температурах;
  • при низких температурах окружающей среды значение явного (ощутимого) тепла значительно выше показателей скрытого тепла, и наоборот, при высоких температурах преобладает выделение скрытого тепла;
  • при температурах, соответствующих комфортному состоянию (22 ± 2°С), при сидячем роде занятий, общее количество выделяемого тепла распределяется приблизительно в следующей пропорции:

60 — 65% явного тепла и 40 — 35% скрытого тепла.

С повышением физических нагрузок начинает преобладать выделение скрытого тепла.

Показатели выделения тепла человеком при различных температурах окружающей среды приведены на нижеследующем графике.

При расчёте поступления тепла от людей нужно принимать во внимание тот факт, что не всегда количество людей, заявленное в исходных данных, будет соответствовать одновременному их присутствию в данном помещении. Этот факт обосновывает применение коэффициента одновременности присутствия. Чтобы выполнить расчёт, соответствующий реальности, этот коэффициент принимают обычно в пределах от 0,9 до 0,95

В других случаях, например в гостиницах, ресторанах и т.п., такой коэффициент должен быть установлен на основании Технического задания Заказчика

Чтобы выполнить расчёт, соответствующий реальности, этот коэффициент принимают обычно в пределах от 0,9 до 0,95. В других случаях, например в гостиницах, ресторанах и т.п., такой коэффициент должен быть установлен на основании Технического задания Заказчика.

Количество тепла, выделяемое одним человеком, определяется исходя из следующих выражений:

количество явного тепла

количество полного тепла

Количество тепла и влаги, выделяемое взрослыми мужчинами

ПоказателиКоличество тепла, Вт, и влаги, г/ч, выделяемых мужчинами при температуре воздуха в помещении, °С
101520253035
В состоянии покоя
Тепло:
явное14012090604010
полное165145120959595
Влага3030405075115
При легкой работе
Тепло:
явное15012010065405
полное180160150145145145
Влага405575115150200
При работе средней тяжести
Тепло:
явное200165130955010
полное290290290290290290
Влага135185240295355415

Примечание. Женщины выделяют 85% , а дети 75% тепла и влаги по сравнению с мужчинами.

Категории работ от вида деятельности.

Категории работЭнергозатраты, ВтВиды работ
Легкие (категория I) IаIб Не более 174 Не более 139 До 174 Производимые сидя, и сопровож- дающиеся незначительными физическими напряжениями. Производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением
Средней тяжести(категория II) IIа IIб 175-290 175-232 233-290 Связанные с постоянной ходьбой, перемещением мелких ( до 1 кг) изделий или предметов в положении стоя или сидя и требуют определенного физического напряжения. Связанные с ходьбой, перемещением и переноской тяжестей ( до 10 кг) и сопровождаются умеренным напряжением.
Тяжелые (категория III) Более 290 Связанные с постоянным пере- движением, перемещением и перенос- кой значительных ( свыше 10 кг) тяжести и требующие больших физических усилий.

1. Категория работ — разграничение работ по тяжести на основе энергозатрат организма. 2. Под рабочей зоной следует принимать пространство, ограниченное по высоте 2 м над уровнем пола, или площадку, на которой находятся места постоянного или непостоянного (временного) пребывания людей.

2 Особенности помещения

Вышеуказанные методы применимы только для приблизительного подсчёта. В связи с этим полностью им доверять не стоит. Даже человек, который ничего не понимает в подобных расчётах, может засомневаться в их правдоподобности. К примеру, не могут же быть одинаковые цифры для северных и южных регионов. Также стоит учитывать и количество окон, стен в комнате, которые выходят на улицу. Для комнаты, где одна стена контактирует с воздухом и имеется только одно окно, теплопотери будут выше, чем в угловом помещении с двумя окнами.

Кроме этого, важны и площадь самих окон, материал, из которых они изготовлены, и ещё другие нюансы, влияющие на теплопотери. Одним словом, учитывать при расчёте отопления помещения необходимо множество факторов. Сделать это не так сложно даже начинающему мастеру. Благодаря такому подходу теплопотери будут минимальными.

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Необходимые характеристики

При определении тепловой мощности для отопительной системы, следует учитывать многие характеристики жилища, среди которых:

Схема монтажа системы отопления.

тип и величина объекта (квартира, загородный дом с двумя, тремя или четырьмя этажами, коттедж и т.д.);
архитектурная часть (берутся во внимание размеры полов, наружных стен, крыши, дверных и оконных проемов);
температурные режимы, присутствующие в каждой комнате жилища (по умолчанию можно использовать СНиПы 2.04.05-91);
конструкции полов, крыши и наружных стен (типы используемых материалов, толщина утепляющих прослоек и т.д.);
функциональное назначение имеющихся помещений (жилые и нежилые);
специальные данные (продолжительность отопительного сезона, количество проживаемых человек и т.д.);
количество точек, предназначенных для разбора теплой воды.

При расчетах специалисты настоятельно рекомендуют учитывать все эти параметры. Ведь только тогда удастся получить наиболее четкие результаты, относительно величины тепловой мощности для системы отопления вашего дома

Однако нередко при расчетах берут во внимание только часть из них, но при этом прибавляют от 10 до 25% к полученной мощности

Определение понятия тепловой мощности

Тепловая мощность оборудования напрямую зависит от количества потребляемой энергии котлом Под мощностью тепловыделения понимается количество теплоты, образующееся при преобразовании исходного носителя в энергию обогрева. Этот показатель отличен по величине для разных видов энергоносителей и рассчитывается для каждого из них индивидуально. Для газовых котлов он зависит от объема природного или сжиженного газа, подводимого к горелке в единицу времени.

При рассмотрении электрических аналогов этот параметр напрямую связан с мощностью электроэнергии, потребляемой агрегатом от сети 220 или 380 Вольт и его тепловым КПД. Соотношение тепловых и электрических мощностей задается специальными формулами, переводящими одно значение в другое.

Влияние размещения и способа подключения радиаторов на теплообмен

Лучшим местом размещения радиатора является место под световыми проемами, поскольку через окно, каким бы утепленным оно не было, происходят наибольшие потери тепла. Кроме того, горячий воздух от отопительного прибора создает тепловую завесу: холодный воздух от окна не распространяется по помещению, улучшается циркуляция.

Изменение тепловой мощности радиатора в зависимости от размещения и наличия экрана.

Если вы решили скрыть радиаторы под экраны или декоративные панели, это приведет к потере мощности. Иногда к таким мерам прибегают, чтобы целенаправленно снизить силу теплового потока на 10-15%.

Снижение тепловой мощности при различных способах подключения.

Существенное влияние оказывает и способ подключения радиаторов:

  1. Двустороннее или одностороннее. Подвод труб с разных сторон помогает увеличить теплоотдачу батареи, при таком подключении мощность прибора соответствует заявленной максимальной. Однако конструктивно к радиаторам с менее, чем 20 секциями лучше подводить трубы с одной стороны.
  2. Верхнее или нижнее. Подача теплоносителя в верхнюю часть батареи, при отводе через нижнюю, оказывает минимальное влияние на теплопередачу. Подача снизу вверх снижает показатель на 20-22%.

Порядок вычислений при расчете потребляемого тепла

При отсутствии такого устройства, как счетчик на горячую воду, формула расчета тепла на отопление должна быть следующей: Q = V * (T1 – T2) / 1000. переменные в данном случае отображают такие значения, как:

  • Q в данном случае — это общий объем энергии тепла;
  • V – показатель потребления горячей воды, который измеряется либо в тоннах, либо в кубических метрах;
  • T1 – температурный параметр горячей воды (измеряется в привычных градусах Цельсия). В данном случае более уместно будет брать в расчет ту температуру, которая характерна для определенного рабочего давления. Этот показатель имеет специальное название – энтальпия. Но в случае отсутствия требуемого датчика можно принять за основу ту температуру, которая будет максимально приближена к энтальпии. Как правило, ее средний показатель варьируется в пределах от 60 до 65°C;
  • T2 в этой формуле – температурный показатель холодной воды, который также измеряется в градусах Цельсия. Ввиду того, что попасть к трубопроводу с холодной водой весьма проблематично, подобные значения определяются постоянными величинами, которые отличаются в зависимости от погодных условий за пределами жилища. К примеру, в зимнее время года, то есть в самый разгар отопительного сезона, эта величина составляет 5°C, а летом, когда отопительный контур отключен – 15°C;
  • 1000 – это обычный коэффициент, при помощи которого можно получить результат в гигакалориях, что более точно, а не в обычных калориях.

Расчет гкал на отопление в закрытой системе, которая является более удобной для эксплуатации, должен проходить несколько иным образом. Формула расчета отопления помещения с закрытой системой является следующей: Q = ((V1 * (T1 – T)) — (V2 * (T2 – T))) / 1000.

  • Q – все тот же объем тепловой энергии;
  • V1 – это параметр расхода теплоносителя в подающей трубе (источником тепла может выступать как обычная вода, так и водяной пар);
  • V2 – объем расхода воды в трубопроводе отвода;
  • T1 – температурное значение в трубе подачи теплоносителя;
  • T2 – показатель температуры на выходе;
  • T – температурный параметр холодной воды.

Можно сказать, что расчет теплоэнергии на отопление в данном случае зависит от двух значений: первое из них отображает поступившее в систему тепло, измеряемое в калориях, а второе – тепловой параметр при отводе теплоносителя по обратному трубопроводу.

Гкал в многоквартирных домах

В многоквартирных домах гигакалории используются в тепловых расчетах. Если знать точное количество теплоэнергии, которое остается в доме, то можно рассчитать счет для оплаты отопления. Например, если в доме не установлен общедомовой или индивидуальный прибор тепла, то за централизованное отопление придется платить исходя из площади обогреваемого помещения. В том случае если тепловой счетчик установлен, то подразумевается разводка горизонтального типа или же последовательная, или коллекторная. В таком варианте в квартире делают два стояка для подающей и обратной трубы, а система внутри квартиры определяется жильцами. Такие схемы используются в новых домах. Именно поэтому жильцы могут самостоятельно регулировать расход тепловой энергии, сделав выбор между комфортом и экономией.

Регулировка производится следующим образом:

  1. За счет дросселирования батарей отопления происходит ограничение проходимости прибора отопления, следовательно, температура в нем снижается, а расход тепловой энергии уменьшается.
  2. Установка общего термостата на обратной трубе. В таком варианте расход рабочей жидкости определяется температурой в квартире и если она увеличивается, то расход снижается, а если уменьшается, то расход увеличивается.

Учетные приборы для домов и квартир

Специальный прибор позволяет точно подсчитывать тарифы за водоснабжение, электричество, газ и тепло. Пользователям разрешается устанавливать теплосчетчик для фиксации расходов тепловой энергии. Устройство производит измерение в Гкал/ч, кВт/ч и кДж/ч. На сегодняшний день популярны.

Крыльчатые счетчики

Крыльчатый счетчик эффективно работает при температуре ниже 22 градусов

Счетчик имеет вид механизма с перпендикулярным расположением оси вращения. Модель характеризуется низкой чувствительностью, что позволяет точно измерять тепловые затраты. Регуляторы подходят для помещений с хорошей теплоизоляцией, температурными показателями в +26 градусов. Крыльчатый аппарат при функциях корректировки температуры до +22 градусов считает минимум Гкал.

Преимущества:

  • недорогая стоимость;
  • запитка от батареек;
  • простота использования;
  • точность замеров.

Минусы:

  • риск поломок вследствие гидроудара;
  • быстрый износ механизма;
  • повышение давления в системе;
  • при заклинивании крыльчатки водопоток не пропускается.

Приборы с регистраторами скачков

Электронные приборы стоят дороже, но точнее считают гигакалории

Импульсный аппарат производит удаленное снятие показаний с 2-16 каналов, поэтому подходит для частного или многоквартирного дома. Учет и передача данных производится на ЖК-монитор, через разъемный интерфейс, на ноутбук или компьютер при помощи сетевого кабеля, через GSM-сеть.

Сценарий, по которому нужно измерить показания, задает пользователь. Ультразвуковые приборы могут подключаться к системе водо-, газоснабжения, являются частью АСКУЭ или совмещаются с системой «умный дом».

Преимущества:

  • множество вариантов для общедомовых и частных измерений;
  • возможность интеграции в несколько учетных систем;
  • прочность за счет отсутствия подвижных узлов;
  • красивый внешний вид и компактность;
  • защита от пыли и влаги – счетчик можно поставить на кухне или на улице;
  • прочный корпус;
  • функции самодиагностики неполадок;
  • обширная коммуникация;
  • выполнение со съемным вычислительным блоком или без него;
  • период между проверками – 6 лет, между заменами – 10 лет.

Минусы:

  • высокая стоимость;
  • коммуникационные возможности зависят от специфики выхода;
  • затраты на приобретение расходомеров, датчиков давления, модулей ДУ для приборов базовой комплектации.

Как рассчитать нагрузку?

Показатель тепловой нагрузки определяется несколькими наиболее важными факторами, поэтому при выполнении расчётных мероприятий в обязательном порядке требуется учитывать:

  • общую площадь остекления и количество дверей;
  • разницу температурных режимов за пределами и внутри строения;
  • уровень производительности, режим эксплуатации системы вентиляции;
  • толщину конструкций и материалы, задействованные в возведении строения;
  • свойства кровельного материала и основные конструктивные особенности крыши;
  • величину инсоляции и степень поглощения солнечного тепла внешними поверхностями.

Практикуется применение нескольких способов вычисления тепловой нагрузки, которые заметно различаются не только степенью сложности, но и точностью полученных расчётных результатов

Важно предварительно собрать необходимые для проектирования и расчётных мероприятий сведения, касающиеся схемы установки радиаторов и места вывода ГВС, а также поэтажный план и экспликацию сооружения

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий