Точное определение понятия точка росы с универсальными расчетами по формулам и калькулятору

Как производят расчеты для деревянного дома?

Все измерения для частного дома выполняют на стадии проектирования. Вычисляют в несколько этапов:

  1. Потери сквозь наружные стены.
  2. Через оконные проемы.
  3. Через двери.
  4. Сквозь узлы и связанные с ними перекрытия.
  5. Сквозь слои пола и напольного покрытия.
  6. Складывают все показатели.
  7. Добавляют параметры по вентиляции (10-360%).

Для снижения и компенсации теплопотерь в деревянном доме устанавливают твердотопливные котлы. Мощность такого оборудования напрямую зависит от произведенных вычислений. Считать необходимо в измерительной системе «киловатт-часах за сутки».

Рассчитать вручную самостоятельно теплопотери довольно сложно. Для этого существует множество программ и онлайн-калькуляторов

Но важно понимать принципы всех вычислений, их последовательность и дополнительные нюансы потери тепла в доме. Только так проектируется комфортное для проживания жилье, количество и необходимость утеплителя, системы отопления

Точка росы в стене дома – почему ее важно знать

Большую часть года между температурно-влажностным режимом улицы и помещения есть существенная разница. Именно поэтому в толще стен с утеплителем нередко появляются участки конденсатообразования. При изменении погодных условий они сдвигаются ближе к наружной или внутренней поверхности стены. То есть, к более холодному или теплому участку.

Пример: температура воздуха стабильно равна 25°C, а влажность – 45%. В этом случае конденсат образуется на участке с температурой 12,2°C. При повышении влажности до 65% точка росы сдвигается на более теплый участок, где 18°C.

Почему так важно знать местонахождение точки выпадения конденсата? Потому что она определяет, какой именно слой стенового «пирога» подвергается разрушающему воздействию влаги. Самый плохой вариант – когда намокает утеплитель

При таких условиях большинство теплоизоляционных материалов теряет свои свойства. Они деформируются, пропускают холодный воздух, гниют, теряют упругость. Особенно подвержена этим процессам минеральная вата.

Как сдвинуть точку росы в стене

Если после проведения всех расчетов вас не устраивает расположение точки росы, стоит задуматься над ее смещением. Для этого можно:

  • увеличить слой утеплителя снаружи;
  • использовать материал с высокой паропроницаемостью;
  • демонтировать слой внутреннего утепления, перенеся его наружу;
  • корректировать микроклимат в помещении – установить принудительную вентиляцию, дополнительно нагревать воздух.

Подходящий вариант выбирают, исходя из климатических условий региона проживания, конструктивных особенностей дома, финансовых возможностей и используемых строительных материалов.

Игнорирование такого явления, как конденсация влаги в стеновом «пироге», может слишком дорого обойтись. Как минимум, это неприятный запах в помещении, постоянная сырость. Как максимум – большие колонии плесневых грибов, портящих внутреннюю отделку стен, разрушающих утеплитель и вредящих здоровью домочадцев

Таким образом, расчет точки росы имеет важное значение, если вы хотите возвести надежные и сухие стены для вашего дома

Загрузить новую статью…—-

  • С чего начать
    • Строительство своими руками
    • Проекты и чертежи
    • Разновидности
    • Инструменты и материалы
  • Технология
    • Фундамент
    • Каркас
    • Крыша и кровля
    • Инженерные сети
    • Фасады
    • Отделка и обустройство
  • Самое полезное Каркасные дома — знакомство с технологией Фото каркасных домов 9 вариантов внешней отделки каркасного дома Домокомплект каркасного дома Программы для проектирования каркасных домов
  • Свежие публикации
    • Способы формирования и обшивка теплых углов в каркасном доме
    • Устройство каркаса и инструкция по строительству каркасной бытовки своими руками
    • Каркасные дома от компании «ЦНА»
    • Как сделать расчет балки онлайн на калькуляторе – принцип работы и важные моменты
    • Как поднять каркасный дом для ремонта и передвинуть его на новое место

Комфортные значения точки росы для человека

Точка росы, °CВосприятие человекомОтносительная влажность (при 32°С), %

более 26крайне высокое восприятие, смертельно опасно для больных астмой65 и выше
24-26крайне некомфортное состояние62
21-23очень влажно и некомфортно52-60
18-20неприятно воспринимается большинством людей44-52
16-17комфортно для большинства, но ощущается верхний предел влажности37-46
13-15комфортно38-41
10-12очень комфортно31-37
менее 10немного сухо для некоторых30

Несколько фактов о точке росы.

  • Температура точки росы не может быть выше текущей температуры.
  • Чем выше температура точки росы, тем больше влаги находится в воздухе
  • Высокие температуры точки росы бывают в тропиках, низкие в пустынях, полярных областях.
  • Относительная влажность (RH) около 100 % приводит к выпадению росы, инея(замороженная роса), тумана.
  • Относительная влажность (RH) достигает 100 % в период дождей.
  • Высокие точки росы обычно происходят перед холодными температурными фронтами.

Зачем делать расчет теплопотерь?

Когда же делают расчет потерь тепла в доме? Расчет теплопотерь обязателен при проектировании систем отопления, систем вентиляции, воздушных отопительных систем. Расчетные температуры берут из нормативных документов. Значение внешней температуры воздуха отвечает температуре наружного воздуха наиболее холодной пятидневки. Внутреннюю температуру берут или ту, которую желаете, или из норм, для жилых помещений это 20+-2°С.

Исходными данными для расчета служат: внешняя и внутренняя температура воздуха, конструкция стен, пола, перекрытий, назначение каждого помещения, географическая зона строительства. Все тепловые потери на прямую зависят от термического сопротивления ограждающих конструкций, чем оно больше, тем меньше теплопотери.

Для обеспечения комфортных условий пребывания людей в помещении нужно чтобы было правдивым уравнение теплового баланса 

           Qп+ Qо+ Qс+ Qк= Qср+ Qос+ Qпр+ Qлюд,       

где Qп–теплопотери через пол, Qо–теплопотери через окна, Qс–теплопотери через стену, Qк- теплопотери через крышу, Qср–теплопоступления от солнечной радиации, Qос–теплопоступления от отопительных систем, Qпр–теплопоступления от приборов, Qлюд–теплопоступления от людей.

На практике же, уравнение упрощается и все утраты компенсирует система отопления, независимо водяная или воздушная. 

Теплорасчет ограждающих конструкций по объему здания

Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.

Формула:

Q=V*41 Вт (34 Вт)

  • V – наружный объем строения в м куб;
  • 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.

Для общей формулы мы советуем дополнительно использовать коэффициенты – это число, на которое нужно умножить результат:

  • Стекла в окнах: двойной пакет – 1;
  • переплет – 1,25.

Материалы утеплителя:

  • новые современные разработки – 0,85;

стандартная кирпичная кладка в два слоя – 1;
малая толщина стен – 1,30.
Температура воздуха зимой:

  • -10 – 0,7;

-15 – 0,9;
-20 – 1,1;
-25 – 1,3.
Процент окон в сравнении с общей поверхностью:

  • 10% – 0,8;

20% – 0,9;
30% – 1;
40% – 1,1;
50% – 1,2.

Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.

Какие мероприятия планируют по результатам анализа теплопотерь

При выявлении тепло утечки принимают решение о капитальном ремонте здания. В целях энергосбережения утепляют наружные стены, монтируют более мощные и современные системы отопления. Устанавливают более качественные окна, с большим числом стеклопакетов, оказывающие тепловое сопротивление потерям. Однако чаще всего производят ремонт кровли, поскольку она является наиболее уязвимым местом для выхода тепла.

Если ваша семья, даже при наличии «теплых полов», оконных стеклопакетов, застекленной лоджии и современной входной двери, мерзнет – причину нужно искать в утечках теплового ресурса. Расчетные данные будут поводом для обращения в управляющую компанию и инициации соответствующих действий с ее стороны.

Описание процесса расчета

Все программы и калькуляторы, подсчитывающие утечку тепла, основаны на существующих расчетных формулах в соответствии с правилами и нормативами. В рекомендуемом расчете теплопотерь дома, необходимо вводить параметры помещения или дома, в соответствующие графы.

Параметры, применяемые в расчетах

Для получения коэффициента, характеризующего потери тепла, необходимо учитывать следующие данные:

  • разницу внутренней и внешней температур;
  • объем воздуха в помещении;
  • способность ограждений (стен, потолка, окон и т.д.) удерживать тепло.

Последний показатель учитывает тепловое сопротивление стройматериала.

Формула и исходные данные для расчета

Упрощенная формула для расчета теплопотерь помещения выглядит следующим образом:

Q = S· T : R,

где Q – объем теплопотерь, S – объем помещения, T – разница между внешней и внутренней температурами, R – величина сопротивления утечки тепла материала.

Для подсчетов по формуле необходимо вводить следующие данные:

  • для вычисления объема (S) – метраж помещения и высоту потолков;
  • для установления разницы температур (T) – значения наружной и внутренней температур воздуха;
  • для определения (R) – типы материала фасада, наружных стен, стеклопакетов и т.д, а также их физические свойства.

При подсчете утечки тепла стоит понимать, что абсолютно все факторы не поддаются полному учету. Это и конструктивные ошибки, и внутри стеновой конденсат. Поэтому полученные данные лучше проверить экспериментальным путем.

Теплопотери через канализацию

Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.

Допустим, что семья в доме потребляет 15 м3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кг×°C). Плотность воды 1000 кг/м3. Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.

Соответственно в месяц теплопотери через канализацию составят:

1000 кг/м3 × 15 м3 × 23°C × 4,183 кДж/(кг×°C) = 1443135 кДж

1443135 кДж = 400,87 кВт×ч

За 7 месяцев отопительного периода жильцы выливают в канализацию:

7 × 400,87 кВт×ч = 2806,09 кВт×ч

Тепловые потери за счет крыши или потолка

Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.

Факторы, влияющие на теплопотери

Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне. В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения. Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

  • через толщу бетона
  • через стальные стержни
  • от стальных стержней к бетону

Теплопотери через мостики холода в бетоне

Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом. Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.

Уменьшение теплопотерь и смещение точки росы в утеплитель  при наружном утеплении стены

Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было. При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки. Соответственно, три основных метода борьбы с таким явлением — это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

Расчет точки росы

Существует несколько способов определения параметра.

По математической формуле

Применяют следующее выражение:

Tp=b((aT/b+T)+InRH)/a-((aT/b+T)+InRH), где

Тр — точка росы, °С;

Расчет точки росы происходит по математическим формулам.

A и b — безразмерные коэффициенты, равные 17,27 и 237,7 соответственно;

RH — относительная влажность воздуха в долях единицы;

Т — температура воздуха, °С;

Ln — натуральный логарифм.

Приведенная формула справедлива для значений Т=0…+60°С и атмосферного давления 762 мм. рт. ст.

Программы-калькуляторы

Специализированные приложения производят вычисления автоматически. Пользователю необходимо ввести исходные данные и нажать кнопку «Старт». Кроме числового результата, программы отображают графики зависимости влажности от степени нагретости воздуха. Такая форма представления информации является более наглядной.

С помощью онлайн-калькулятора

Вычислительные сервисы имеются на многих сайтах. Они избавляют пользователя от необходимости покупать и скачивать программу.

Онлайн-калькулятор есть на многих сайтах.

В специальные поля вводят данные:

  • температуру воздуха;
  • относительную влажность;
  • атмосферное давление.

После нажатия кнопки «Вычислить» на экране отображается искомая величина.

Недостаток данного способа состоит в том, что изготовитель калькулятора в большинстве случаев неизвестен, поэтому результат может быть недостоверным.

Специальные инструменты

Существуют тепловизоры с функцией расчета точки росы. Объекты с такой и более низкой температурой помечаются на экране особым образом.

Гигрометр — измерительный прибор, предназначенный для определения влажности воздуха.

Влажность измеряют с помощью приборов:

  1. Гигрометра. Электронное устройство удобно в пользовании, но вычисления производит с большой погрешностью.
  2. Психрометра. Он состоит из 2 спиртовых термометров. Колбу одного обматывают влажной салфеткой. За счет испарения воды показания на нем будут ниже, чем на «сухом». Чем ниже влажность в помещении, тем активнее улетучивается жидкость. Значит, и разница в показаниях будет больше. Результат отыскивают в справочнике вручную. Определенная с помощью психрометра искомая точка является наиболее точной.

Таблицы

В интернете и специальной литературе публикуются таблицы со значениями точки образования росы для воздуха с разными параметрами.

Пример:

Температуравоздуха, °СТемпература насыщения в °С при влажности воздуха (в %)
30%35%40%45%50%55%60%65%70%75%80%85%90%95%
-10-23,2-21,8-20,4-19-17,8-16,7-15,8-14,9-14,1-13,3-12,6-11,9-10,6-10
-5-18,9-17,2-15,8-14,5-13,3-11,9-10,9-10,2-9,3-8,8-8,1-7,7-6,5-5,8
-14,5-12,8-11,3-9,9-8,7-7,5-6,2-5,3-4,4-3,5-2,8-2-1,3-0,7
+2-12,8-11-9,5-8,1-6,8-5,8-4,7-3,6-2,6-1,7-1-0,2-0,61,3
+4-11,3-9,5-7,9-6,5-4,9-4-3-1,9-10,81,62,43,2
+5-10,5-8,7-7,3-5,7-4,3-3,3-2,2-1,1-0,10,71,62,53,34,1
+6-9,5-7,7-6-4,5-3,3-2,3-1,1-0,10,81,82,73,64,55,3
+7-9-7,2-5,5-4-2,8-1,5-0,50,71,62,53,44,35,26,1
+8-8,2-6,3-4,7-3,3-2,1-0,90,31,32,33,44,55,46,27,1
+9-7,5-5,5-3,9-2,5-1,21,22,43,44,55,56,47,38,2
+10-6,7-5,2-3,2-1,7-0,30,82,23,24,45,56,47,38,29,1
+11-6-4-2,4-0,90,51,834,25,36,37,48,39,210,1
+12-4,9-3,3-1,6-0,11,62,84,15,26,37,58,69,510,411,7
+13-4,3-2,5-0,70,72,23,65,26,47,58,49,510,511,512,3
+14-3,7-1,71,534,55,878,29,310,311,212,113,1
+15-2,9-10,82,445,56,789,210,211,212,213,114,1
+16-2,1-0,11,53,256,37,6910,211,312,213,214,215,1
+17-1,30,62,54,35,97,28,81011,212,213,514,315,216,6
+18-0,51,53,25,36,88,29,61112,213,214,215,316,217,1
+190,32,24,267,79,210,511,71314,215,216,317,218,1
+2013,15,278,710,211,512,81415,216,217,218,119,1
+211,8467,99,511,112,413,51516,217,218,119,120
+222,556,98,810,511,913,514,8161718192021
+233,55,77,89,811,512,914,315,716,918,119,1202122
+244,36,78,810,812,313,815,316,517,81920,121,12223
+255,27,59,711,513,114,716,217,518,82021,122,12324
+2668,510,612,414,215,817,218,519,82122,223,124,125,1
+276,99,511,413,315,216,518,119,520,721,923,124,12526,1
+287,710,212,214,21617,51920,521,722,82425,126,127
+298,711,113,115,116,818,519,921,322,522,825262728
+309,511,813,91617,719,721,322,523,82526,127,128,129
+3211,213,81617,919,721,422,824,325,626,72829,230,231,1
+3412,515,217,219,221,422,824,225,72728,329,431,131,933
+3614,617,119,421,523,22526,32829,330,731,832,83435,1
+3816,318,821,323,425,126,728,329,931,232,333,534,635,736,9
+4017,920,622,62526,928,730,331,73334,335,636,83839

Поведение точки росы в различных видах стен

Область в толще стены, где тепло встречается с холодом при сильном перепаде температур внутри дома и снаружи, искомая точка росы. В зависимости от величины перепадов температуры, она перемещается в массиве стены.

Когда толщина не соответствует теплопроводности материала, точка росы слишком близко приближается к наружной или внутренней поверхности, способствуя появлению конденсата. Кроме этого, есть другие факторы, влияющие на её положение:

  • Интенсивность отопления.
  • Влажность в помещении.
  • Регулярность проветривания.

Неутеплённые стены

Это массив однородного строительного материала – бетона, кирпича, древесины или любого другого, без дополнительного утепления. Точка росы в такой среде принимает различные положения:

  • Между внешней поверхностью и серединой стены. При достаточной толщине поверхность остаётся сухой всегда.
  • Между серединой и поверхностью внутри помещения. Она остаётся сухой, но большое различие значений температуры внутри и снаружи, может стать причиной появления конденсата.
  • Критически близко или прямо на поверхности стены внутри здания. Даже незначительная разница температур может спровоцировать конденсат.

Наружное утепление

Если из-за конструктивных особенностей здания происходит неправильное размещение точки росы и влага конденсирует, следует выполнить дополнительное утепление. При отсутствии ограничений или полного исключения фасадных работ, утепление зданий предпочтительней провести снаружи, улучшив этим условия эксплуатации стен. При этом место точки росы вновь зависит от правильного расчёта и монтажа утеплителя:

  • Расчёт и добавление слоя достаточной толщины обеспечит правильное размещение точки росы, смесив её в утеплитель. Несмотря на различие температуры внутри и снаружи, в доме всегда будет сухо.
  • Монтаж теплоизолятора толщиной, менее расчётной, не обеспечит оптимальные условия, после чего останется риск появления конденсата.

Утепление изнутри

При кажущейся лёгкости исполнения с минимальными затратами это непростое, рискованное занятие. Так как нормальные стены обычно не требуют утепления, мы имеем дело с проблемной, у которой точка росы уже смещена от центра стены внутрь здания. Монтаж утеплителя изнутри понизит температуру стены, что может спровоцировать перемещение точки росы на поверхность, сопряжённую с утеплителем и образование конденсата. Положение её зависит от условий:

  • Выбор утеплителя. Необходимо использовать максимально эффективный, который полностью поглотит тепло от помещения. Конечно, стена совсем перестанет обогреваться, но это необходимое условие, так как в месте примыкания утеплитель и стена должны быть всегда равной температуры. Это исключит появление конденсата.
  • Качество выполненных работ. Нужна полная изоляция поверхности от тепла, так как небольшая разница температур вызовет конденсат, который положит начало негативным процессам.

Какие мероприятия планируют по результатам анализа теплопотерь

При выявлении тепло утечки принимают решение о капитальном ремонте здания. В целях энергосбережения утепляют наружные стены, монтируют более мощные и современные системы отопления. Устанавливают более качественные окна, с большим числом стеклопакетов, оказывающие тепловое сопротивление потерям. Однако чаще всего производят ремонт кровли, поскольку она является наиболее уязвимым местом для выхода тепла.

Если ваша семья, даже при наличии «теплых полов», оконных стеклопакетов, застекленной лоджии и современной входной двери, мерзнет – причину нужно искать в утечках теплового ресурса. Расчетные данные будут поводом для обращения в управляющую компанию и инициации соответствующих действий с ее стороны.

2 Сферы применения понятия

Переход влаги в жидкое агрегатное состояние существенно меняет условия жизни и трудовой деятельности людей, отражается на работе конструкций и механизмов

Поэтому во многих сферах точке выпадения пара в осадок уделяют особое внимание

2.1 Строительство

Ограждающие конструкции большинства зданий обладают паропроницаемостью. Исключением являются только металлические ангары и гаражи. Относительная влажность в помещении выше, чем снаружи, и пар под действием парциального давления проникает в стены.

Здания обладают паропроницаемостью, которая зависит от типа строительного материала. 

В случае наличия в их толще участков с температурой насыщения или ниже он конденсируется, что приводит к таким последствиям:

  1. Снижению термического сопротивления конструкции.
  2. Сокращению срока службы строительного материала. При похолодании вода превращается в лед и расширяется, вызывая внутренние разрушения.
  3. Развитию колоний плесени и грибка (при увлажнении поверхности).

Строительные материалы имеют разную паропроницаемость. Наименьший показатель у тяжелого железобетона (панельные дома) — 0,03 мг/м*ч*Па, наибольший — у газобетонных блоков — 0,23 (при плотности 400 кг/куб. м).

2.2 Сельское хозяйство

При снижении температуры воздуха влага конденсируется на побегах и листьях растений. При частых повторениях это провоцирует заболевания. Таким образом, знание точки конденсации водяного пара позволяет планировать профилактические и лечебные мероприятия.

Влага конденсируется на листьях растений.

В засушливых регионах, наоборот, конденсация атмосферной влаги может частично заменить систему орошения. Селекционеры работают над выведением сортов, способных усваивать воду таким образом. Тогда знание критической точки поможет определить необходимую производительность поливальных установок, если прогноз погоды в ближайшее время не предвещает дождей.

Меры защиты некоторых растений, например винограда, тоже планируют с учетом данного параметра. Если он высокий, значит, воздух содержит много влаги, и повреждения от заморозков, в т.ч. радиационных, будут умеренными.

Строительные нормы и правила

Для установления и закрепления норм теплопотерь дома существуют своды правил (СП), нормы и правила (СНиП), применяемые при строительстве, и ГОСТ:

  • СП 131.13330.2012 – о строительной климатологии;
  • СП 50.13330.2010 – о тепловой защите зданий;
  • СП 60.13330.2012 – об отоплении, вентилировании и кондиционировании в зданиях воздуха.
  • СНиП 2.04.07-86* – о тепловых сетях;
  • СНиП 2.08.01-89* – о жилых зданиях;
  • СНиП 2.04.05-91* – об отоплении, вентилировании и кондиционировании.
  • ГОСТ 22270-76 – об оборудовании для кондиционирования, вентиляции и отопления;
  • ГОСТ 30494-2011 – о параметрах микроклимата в помещениях жилых и общественных зданий;
  • ГОСТ 31311-2005 – об отопительных приборах.

Данные энергетического паспорта МКД должны соответствовать вышеуказанной технической документации и быть в пределах регламентированных нормативов.

Когда можно или нельзя утеплять стены изнутри

Теперь разберем, когда можно утеплять стену изнутри, когда нельзя, от чего это зависит и как зависит. Что такое это «нельзя», какие это последствия.

Основное «можно или нельзя» заключается в том, что будет со стеной после утепления ее изнутри. Если стена будет сухая,- можно. Если стена будет сухая, и только при резком , неожиданном (которое случается раз в десяток лет) похолодании может подмокнуть,- можно пробовать утеплять изнутри (на усмотрение заказчика). Если стена стабильно мокрая весь зимний расчетный период (с обычной зимней температурой по региону),- утеплять изнутри нельзя. Как мы уже выяснили выше, эти последствия зависят от положения точки росы. А положение точки росы в стене можно посчитать, и тогда точно (ДО утепления) будет понятно, можно или нельзя изнутри утеплять конкретную стену.

Теперь немного рассуждений на тему что влияет на возможность утепления изнутри, и как влияет. Эта часть статьи вызвана вопросами читателей, такого характера: «Почему в соседней ветке читателю можно утеплить изнутри, а мне нельзя, ведь у нас с ним (дальше варианты) одинаковая планировка квартиры, или дома построены из одного материала, или один город проживания, или одинаковая толщина стены и тд.

Давайте разбираться. Как мы уже выяснили выше, последствия внутреннего утепления зависят от:

  • точки росы (температуры выпадения конденсата);
  • положения точки росы в стене до и после утепления.

В свою очередь, точка росы (температура) зависит от: влажности в помещении и температуры в помещении. А влажность в помещении зависит от:

  • Режима проживания (постоянно или временно);
  • Вентиляции (и притока, и вытяжки, достаточно ли их по расчету ).

А температура в помещении зависит от:

  • Качества работы отопления;
  • Степени утепленности остальных конструкций дома\ квартиры, кроме стен (потолка\крыши, окон, пола).

Положение точки росы зависит от:

  • толщины и материала всех слоев стены;
  • температуры внутри помещения. От чего она зависит – выяснили выше;
  • температуры снаружи помещения. Она зависит от того, улица снаружи или другое помещение, а также от климатической зоны;
  • влажности внутри помещения. От чего она зависит, выяснили выше;
  • влажности снаружи помещения. Она зависит от того, улица снаружи или другое помещение (и от  режима эксплуатации этого помещения), а также от климатической зоны.

Теперь, если собрать ВСЕ факторы влияния на точку росы и положение точки росы, мы получим список факторов влияния, которые надо принимать во внимание при решении вопроса «можно или нельзя в конкретной ситуации утеплить изнутри конкретную стену». Вот такой список этих факторов:

  • режима проживания в помещении  (постоянно или временно);
  • вентиляции (и притока, и вытяжки, достаточно ли их по расчету);
  • качества работы отопления в помещении;
  • степени утепленности остальных конструкций дома\квартиры, кроме стен (потолка\крыши, окон, пола);
  • толщина и материал всех слоев стены;
  • температуры внутри помещения;
  • влажности внутри помещения;
  • температуры снаружи помещения;
  • влажности снаружи помещения;
  • климатической зоны;
  • что находится за стеной, улица или другое помещение (его режим эксплуатации).

Становится ясно, что двух одинаковых ситуаций по утеплению изнутри может и не быть. Посмотрим, как (приблизительно, без конкретики) выглядит ситуация, когда утепление изнутри возможно:

  • помещение постоянного проживания,
  • вентиляция выполнена согласно норме (для этого помещения),
  • отопление работает хорошо,  и выполнено согласно норме,
  • остальные конструкции утеплены согласно норме,
  • стена, которую планируется утеплить,- толстая, и достаточно теплая. По расчету для нее дополнительного утепления, его не должно быть боле 50мм (пенопласт,  вата,  ЭППС). По сопротивлению теплопередаче стена «не дотягивает» до нормы 30 и меньше %.

Если совсем упростить, то получается так: чем теплее регион, чем лучше у Вас отопление и вентиляция, чем толще и теплее стена, тем более вероятно, что утеплить изнутри можно. Я думаю, понятно, что в каждом конкретном случае нужно рассматривать свои «входящие данные» и тогда принимать решение.

Все, что написано выше,  создает впечатление, что случаев, когда внутреннее утепление возможно и не вредно,- совсем мало. Это действительно так. По нашему опыту, из 100 обратившихся с идеей внутреннего утепления, только 10 могут его делать без последствий. В остальных случаях нужно утеплять снаружи.

По материалам сайтов stomasterov.ru, econet.ua,kapitel-1.ru,bane.guru,

Заключение

Рассчитав показатели для всего дома с учетом вентиляции, можно определить мощность котла. Покомнатные подсчеты помогут правильно выбрать радиаторы и количество их секций. Для облегчения работы по проектированию системы отопления можно воспользоваться онлайн-сервисами и специальными программами. Нужен идеально точный результат? Направляемся к специалистам, которые разработают профессиональный проект системы отопления со всеми ее особенностями.

Читайте далее:

Правильный расчет теплопотерь — калькулятор и нормативные методики

Грамотный расчёт системы отопления — залог уюта вашего дома

Как правильно выполнить расчет радиаторов отопления по площади дома

Как самостоятельно провести расчет системы отопления частного дома

Самостоятельный расчет системы отопления частного дома

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий