1 Гидравлический расчет
Для корректного проведения гидравлического расчета отопления потребуется изучить основную терминологию, чтобы лучше понять происходящие процессы в пределах системы. К примеру, увеличение скорости нагретой рабочей жидкости может спровоцировать параллельное увеличение гидросопротивления в магистралях трубопровода. Измеряется сопротивление системы отопления в метрах водного столба.
Большинство классических схем теплоснабжения состоит из следующих обязательных элементов:
- 1. теплогенератора;
- 2. магистрального трубопровода;
- 3. отопительных элементов (регистров или радиаторов);
- 4. гидравлической арматуры (запорной и регулировочной).
С помощью регулировочной арматуры проводится увязка отопительной системы. Каждому элементу присуща своя индивидуальная техническая характеристика, которая используется для гидравлического расчета системы отопления. Онлайн-калькулятор или таблица excel с формулами и алгоритмами вычислений смогут в значительной степени упростить эту задачу. Эти программы предоставляются абсолютно бесплатно и никак не повлияют на бюджет проекта.
Автоматизированный гидравлический расчет системы отопления Excel
Чтобы было удобнее делать гидравлические расчеты, можно воспользоваться различными компьютерными программами, позволяющими выполнять точные вычисления. Одной из самых таких популярных программ считается Excel.
Кстати, если вы не знаете основ гидравлики, то сделать вам это будет трудно, даже в компьютерных программах. Это связано с тем, что в некоторых из них нет расшифровок формул и вычислений сопротивления в особо сложных цепочках.
Нюансы некоторых программ:
- OvertopCO и DanfossCO могут вести расчеты систем с естественной циркуляцией;
- HERZ C.O. 3.5 – работает по способу расчета удельных потерь давления;
- Potok – отлично справляется с расчетами по изменяющимся перепадам температур по стоякам.
Что касается работы в Excel, то использовать электронные таблицы очень удобно. Нужно просто знать поочередность действий и точные вычислительные формулы. Вначале выбирается нужная ячейка, в которую вводятся данные. Дальнейший расчет происходит путем автоматического применения формул.
Например, для того, чтобы посчитать диаметр труб, нам нужно знать:
- Разницу между горячим и холодным источником тепла для двухтрубной системы или расход жидкости для однотрубной;
- Скорость движения источника тепла и его потока;
- Плотность жидкости и параметры исследуемых участков (их длина в метрах и число находящихся там приборов).
Для расчета размеров труб внутри каждого участка как раз удобно пользоваться экселевскими таблицами.
Расширительный бак
Один из параметров, нуждающихся в расчете для автономной системы – объем расширительного бачка.
Точный расчет основывается на довольно длинном ряде параметров:
- Температуре и типе теплоносителя. Коэффициент расширения зависит не только от степени нагрева батарей, но и от того, чем они заполнены: водно-гликолевые смеси расширяются сильнее.
- Максимально рабочем давлении в системе.
- Давлении зарядки бачка, зависящем, в свою очередь, от гидростатического давления контура (высоты верхней точки контура над расширительным баком).
Есть, однако, один нюанс, позволяющий сильно упростить расчет. Если занижение объема бачка приведет в лучшем случае к постоянному срабатыванию предохранительного клапана, а в худшем – к разрушению контура, то его избыточный объем ничем не повредит.
Именно поэтому обычно берется бак с литражом, равным 1/10 суммарного количества теплоносителя в системе.
Расширительный бак может быть установлен в любой точке автономного закрытого контура.
Теплый пол расчет мощности
На определение необходимой мощности теплого пола в помещении влияет показатель теплопотерь, для точного определения которых потребуется произвести сложный теплотехнический подсчет по особой методике.
- При этом учитываются следующие факторы:
- площадь обогреваемой поверхности, общая площадь помещения;
- площадь, тип остекления;
- наличие, площадь, тип, толщина, материал и термическое сопротивление стен и иных ограждающих конструкций;
- уровень проникновения солнечных лучей в помещение;
- наличие иных источников тепла, в том числе учитывается тепло, источаемое оборудованием, различными приборами и людьми.
Методика выполнения подобных точных расчетов требует глубоких теоретических знаний и опыта, а потому теплотехнический расчет лучше доверить специалистам.
Ведь только они знают, как рассчитать мощность теплого пола водяного с наименьшей погрешностью и оптимальными параметрами
Особенно это важно при проектировании обогреваемого встроенного отопления в помещениях большой площадью с большой высотой
Укладка и эффективная эксплуатация водяного обогреваемого пола возможна лишь в помещениях с уровнем теплопотерь менее 100 Вт/м². Если теплопотери выше, необходимо принять меры по утеплению помещения с целью снижения потерь тепла.
Однако если проектный инженерный расчет стоит немалых денег, в случае с небольшими помещениями приблизительные расчеты можно провести самостоятельно, приняв 100 Вт/м² за усредненную величину и отправную точку в дальнейших расчетах.
- При этом для частного дома принято корректировать усредненный показатель потерь тепла исходя из общей площади строения:
- 120 Вт/м² – при площади дома до 150 м²;
- 100 Вт/м² – при площади 150-300 м²;
- 90 Вт/м² – при площади 300-500 м².
Нагрузка на систему
- На то, какая будет мощность водяного теплого пола на квадратный метр, влияют такие параметры, создающие нагрузку на систему, определяющие гидравлическое сопротивление и уровень теплоотдачи, как:
- материал, из которого изготовлены трубы;
- схема укладки контуров;
- длина каждого контура;
- диаметр;
- расстояние между нитками труб.
Характеристика:
Трубы могут быть медными (отличаются наилучшими теплотехническими и эксплуатационными характеристиками, однако обходятся не дешево и требуют специальных навыков, а также инструмента).
Основных схем укладки контура два: змейкой и улиткой. Первый вариант наиболее прост, но менее эффективен, так как дает неравномерный нагрев пола. Второй более сложен в реализации, но эффективность прогрева на порядок выше.
Площадь, отапливаемая одним контуром, не должна превышать 20 м². Если отапливаемая площадь больше, то целесообразно трубопровод разбить на 2 или более контуров, подключив их к распредколлектору с возможностью регулирования нагрева участков пола.
Общая длина труб одного контура должна быть не больше 90 м. При этом, чем больший выбран диаметр, тем больше расстояние между нитками труб. Как правило, не применяются трубы с диаметром более 16 мм.
Каждый параметр имеет свои коэффициенты для дальнейших расчетов, посмотреть которые можно в справочниках.
Расчет мощности теплоотдачи: калькулятор
Чтобы определить мощность водяного пола, необходимо найти произведение общей площади помещения (м²), разницы температур подачи и обратно поступающей жидкости, и коэффициентами, зависящими от материала труб, напольного покрытия (дерево, линолеум, плитка и т.д.), других элементов системы.
Мощность водяного теплого пола на 1 м², или теплоотдача, не должна превышать уровень теплопотерь, однако не более чем на 25%. В случае слишком малого или слишком большого значения, необходимо произвести перерасчет, выбрав иной диаметр труб и расстояние между нитями контура.
Показатель мощности тем выше, чем больше диаметр выбранных труб, и тем ниже, чем больший шаг задан между нитками. Для экономии времени можно воспользоваться электронными калькуляторами расчета водяного пола или скачать специальную программу.
Принцип гидравлического расчета для системы отопления
На этом этапе расчетов необходимо подобрать нужные параметры отопительных труб, такие как их длина и диаметр, а также осуществить балансировку всей системы посредством клапанов радиатора. Подобные вычисления также позволят определить оптимальную мощность такого функционального элемента системы, как электрический насос циркуляции.
Итоги гидравлических расчетов позволяют узнать следующие показатели: М – объем воды, который расходуется в процессе работы (измеряется в кг/с), DP1, DP2… DPn – это тот напор, который теряется при прохождении теплоносителя от котла к каждому из радиаторов. Как следствие, расход воды можно высчитать по следующей формуле: M = Q/Cp * DPt Q, где Ср – это параметр удельной теплоемкости теплоносителя, который равен в среднем 4,19 кДж, а DPt – это разница температур воды на входе в котел и на выходе из него.
Расчет двухтрубной системы отопления с гидравлическим описанием
02 марта 2014г.
Время диктует такие условия, при которых человек ищет для себя наиболее экономичный выход из положения. Что является сейчас основным в жизни каждой семьи? На первом месте среди прочих коммунальных удобств – отопление. Отопление пошло по пути индивидуального формата. Это связано и с простотой подбора более комфортного уровня в квартире или доме, и по экономическим соображениям.
Котельная центрального отопления очень часто не рассчитана на остановки-пуски. Трубопроводы теплотрасс изношены настолько, что лишний пуск выявляет целый ряд порывов в системе. А индивидуальный вариант не несет никаких проблем. Жарко – отрегулировал температуру, холодно – отрегулировал температуру. А если на улице оттепель, то можно и выключить индивидуальный котел.
Недостатки двухтрубной системы
Но человек не останавливается на достигнутом рубеже. Если в вашем доме смонтирована система индивидуального отопления, то вы можете наблюдать такую ситуацию, при которой в дальних комнатах температура ниже, чем в ближайших от котла комнатах. В чем причина? А причина скрыта в том, что монтажники (чтобы не морочить себе голову) выполняют монтаж теплопровода в вашем доме везде трубой одного диаметра .
В тупиковых дух трубных системах отопления движение горячей воды в подающей магистрали противоположно движению остывшей воды в обратной магистрали.
В этой схеме длина циркуляционных колец неодинакова, чем дальше от котла расположен нагревательный прибор, тем больше протяженность циркуляционного кольца, и наоборот, чем ближе отопительный прибор расположен к главному стояку, тем меньше протяженность циркуляционного кольца.
В тупиковых системах добиться одинаковых сопротивлений в коротких и более отдаленных циркуляционных кольцах трудно, поэтому отопительные приборы, близко расположенные к главному стояку, будут прогреваться значительно лучше.
При этом нарушается тепловой баланс. Поэтому в последней комнате у вас температура будет ниже, чем в первой. Особенно это ощутимо в морозные ночи. Конечно, как-то сбалансировать обогрев можно, если открыть все внутренние двери, но ведь это не всегда возможно. Обычно закрыты двери в детскую комнату, в комнату, где старшие дети выполняют домашнее задание и т.д.
Какие же пути решения этой проблемы
Многие специалисты советуют регулировать температуру в отдельных комнатах с помощью обратных вентилей или кранов . Да, это дает шанс, но настроить может только специалист , и настройка продержится до ближайшего изменения температуры на улице.Есть ли другие варианты соблюдения теплового баланса?Да, такие варианты существуют. Вот один из них – двухтрубная отопительная система,с разностью диаметров .
Гидравлический расчет двухтрубной системы отопления
В чем смысл этого предложения? Смысл очень простой, но, в тоже время, потребует несколько иного отношения к монтажу.
Если у вас установлен отопительный котел с выходным диаметром 32 мм, то трубная разводка выстраивается следующим образом.
До первого тройника вы монтируете трубу диаметром 32 мм.
От первого тройника на радиатор отходит труба 16 мм, т.е. минимального диаметра.
От первого тройника до второго монтируется труба диаметром 25 мм.
Между вторым и третьим радиатором монтируется труба диаметром 20 мм, и на радиатор отходит труба 16 мм.
Такая система автоматически соблюдает регулировку обогрева разных комнат или помещений.
Принципы монтажа двухтрубной системы
Как вы заметили – везде на радиаторы отходит труба диаметром 16 мм. А как поступить, если радиаторов больше?
В таком случае выходную трубу с диаметром 32 мм разделяем на два плеча диаметром по 25 мм, далее на два плеча, а от них на два радиатора. Дальше идет два плеча диаметром 20 мм. Если этого недостаточно, то можно завершить разводку двумя плечами диаметром 16 мм. При этом количество радиаторов увеличится до восьми.
Если при подобном варианте трубной схемы температура в разных комнатах будет все равно несколько различаться, то для подгонки параметров необходимо будет провести регулировку вентилями или кранами на радиаторах
Описанная схема походит для котла отопления с выходом 32 мм, но существуют котлы и с другими диаметрами выходного патрубка. Для каждого диаметра придется подбирать диаметры труб.
Необходимо учитывать, что при увеличении количества радиаторов будет уменьшаться эффективность системы в целом.
При монтаже такой двухтрубной разводки надо обязательно подбирать необходимую мощность отопительного котла, от которой зависит уровень обогрева при любом варианте разводки.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м² ;
- Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Анатолий Коневецкий, Крым, Ялта
Анатолий Коневецкий, Крым, Ялта
Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.
Анатолий Коневецкий, Крым, Ялта
Теплоотдача чугунных радиаторов
Диапазон теплоотдачи чугунных батарей колеблется в пределах 125–150 Вт. Разброс зависит от межосевого расстояния. Теперь можно провести расчет. К примеру, ваша комната имеет площадь 18 м². Если в ней запланирована установка батареи 500 мм, то используем следующую формулу: (18:150)x100= 12. Получается, что в этой комнате необходимо установить 12-секционный радиатор отопления.
Все просто. Точно так же можно рассчитать чугунный радиатор с межосевым расстоянием 350 мм. Но это будет лишь приблизительный расчет, потому что для точности необходимо учитывать коэффициенты. Их не так много, но именно с их помощью можно получить максимально точный показатель. К примеру, присутствие в помещении не одного, а двух окон увеличивает теплопотери, так что окончательный результат необходимо умножить на коэффициент 1,1. Не будем рассматривать все коэффициенты, поскольку это займет много времени. О них мы уже писали на нашем сайте, так что найдите статью и ознакомьтесь с ней.
Расход теплоносителя через 1м.п. чугунных радиаторов
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.3, стр. 47 |
Определим расход теплоносителя через одну секцию чугунного радиатора кг/ч
35:10 = 3,5 кг/ч расход теплоносителя через одну секцию (G), где:
10 шт. – количество секций в 1 м.п. радиатора;
35 кг/ч – расход теплоносителя через 1м.п. радиатора.
Расход теплоносителя через 1м.п. отопительных приборов
Расчетная площадь нагревательной поверхности секционных радиаторов Fp в зависимости от числа секций в радиаторе | |||||
ЧислосекцийNi | Радиатор | ||||
М-140-АО | М-140 (М-140-А) | М-140-АО-300 | М-90 | РД-90с | |
Площадь нагревательной поверхности одной секции, экм | |||||
0,35 | 0,31 | 0,217 | 0,26 | 0,275 | |
2 | 0,84 | 0,76 | 0,59 | 0,67 | 0,70 |
3 | 1,18 | 1,07 | 0,80 | 0,93 | 0,97 |
4 | 1,52 | 1,37 | 1,01 | 1,18 | 1,25 |
5 | 1,84 | 1,67 | 1,22 | 1,43 | 1,50 |
6 | 2,16 | 1,98 | 1,43 | 1,68 | 1,73 |
7 | 2,54 | 2,26 | 1,64 | 1,93 | 2,01 |
8 | 2,82 | 2,52 | 1,85 | 2,19 | 2,28 |
9 | 3,15 | 2,83 | 2,06 | 2,44 | 2,56 |
10 | 3,49 | 3,1 | 2,27 | 2,69 | 2,80 |
11 | 3,82 | 3,39 | 2,47 | 2,94 | 3,05 |
12 | 4,12 | 3,68 | 2,68 | 3,19 | 3,30 |
13 | 4,45 | 3,96 | 2,89 | 3,45 | 3,57 |
14 | 4,77 | 4,26 | 3,10 | 3,70 | 3,86 |
15 | 5,08 | 4,58 | 3,31 | 3,95 | 4,06 |
16 | 5,42 | 4,82 | 3,52 | 4,20 | 4,32 |
17 | 5,73 | 5,09 | 3,73 | 4,45 | 4,54 |
18 | 6,05 | 5,39 | 3,94 | 4,71 | 4,80 |
19 | 6,37 | 5,67 | 4,15 | 4,96 | 5,07 |
20 | 6,70 | 5,96 | 4,36 | 5,21 | 5,33 |
21 | 7,01 | 6,24 | 4,57 | 5,46 | 5,59 |
22 | 7,34 | 6,58 | 4,78 | 5,71 | 5,85 |
23 | 7,65 | 6,81 | 4,99 | 5,97 | 6,11 |
24 | 7,99 | 7,10 | 5,20 | 6,22 | 6,37 |
24 | 8,31 | 7,38 | 5,41 | 6,47 | 6,57 |
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.13, стр. 67 |
Красным цветом выделены данные по радиаторам 1-го (7 секций), зеленым — 2-го (8 секций), синим — 3-го (9 секций) типов.
Определим расчетную формулу плотности теплового потока на 1 экм нагревательной поверхности отопительных чугунных радиаторов Gотн / Fp ≤ 7 или
Gотн / Fp ≥ 7
Радиаторы М-140-АО 7 секций (4 радиатора)
Gотн / Fp = (3,5 х 7) : 17,4 : 2,54 = 0,55
Итого: 0,55 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 7 = 24,5 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,05 х ((95,0 + 70,0):2 -20)1,32 = 422,5 Ккал/(ч·экм)
0,35х7 = 2,45 экм
422,5х2,45 х4 = 4140,5 Ккал/ч
Радиаторы М-140-АО 8 секций (1 радиатор)
Gотн / Fp = (3,5 х
Итого: 0,57 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 8 = 28 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)
0,35х8 = 2,8 экм
426,5х2,8 х1 = 1194,2 Ккал/ч
Радиаторы М-140-АО 9 секций (1 радиатор)
Gотн / Fp = (3,5 х 9) : 17,4 : 3,15 = 0,57
Итого: 0,57 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 9 = 31,5 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)
0,35х9 = 3,15 экм
426,5х3,15 х1= 1343,5 Ккал/ч
Суммарная тепловая нагрузка по радиаторам М-140-АО
Qр.от.= 4140,5+1194,2 +1343,5 =6678,2 Ккал/ч
Расчетная формула плотности теплового потока на 1 экм нагревательной поверхности отопительных приборов:
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.8, стр. 52 |
Посмотреть: тепловые нагрузки на отопление админ здания
Коэффициент φ, учитывающий расход воды в систему:
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 48 |
Что такое гидравлический расчёт
Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:
- диаметр и пропускную способность труб;
- местные потери давления на участках;
- требования гидравлической увязки;
- общесистемные потери давления;
- оптимальный расход воды.
Согласно полученным данным осуществляют подбор насосов.
Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).
Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).
Комплексные задачи — минимизация расходов:
- капитальных – монтаж труб оптимального диаметра и качества;
- эксплуатационных:
- зависимость энергозатрат от гидравлического сопротивления системы;
- стабильность и надёжность;
- бесшумность.
Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений
Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:
- по удельным потерям (стандартный расчёт диаметра труб);
- по длинам, приведённым к одному эквиваленту;
- по характеристикам проводимости и сопротивления;
- сопоставление динамических давлений.
Два первых метода используются при неизменном перепаде температуры в сети.
Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.
Пример расчета тепловых нагрузок объекта коммерческого назначения
Это помещение на первом этаже 4-х этажного здания. Месторасположение – г. Москва.
Исходные данные по объекту
Адрес объекта | г. Москва |
Этажность здания | 4 этажа |
Этаж на котором расположены обследуемые помещения | первый |
Площадь обследуемых помещений | 112,9 кв.м. |
Высота этажа | 3,0 м |
Система отопления | Однотрубная |
Температурный график | 95-70 град. С |
Расчетный температурный график для этажа на котором находится помещение | 75-70 град. С |
Тип розлива | Верхний |
Расчетная температура внутреннего воздуха | + 20 град С |
Отопительные радиаторы, тип, количество | Радиаторы чугунные М-140-АО – 6 шт. Радиатор биметаллический Global (Глобал) – 1 шт. |
Диаметр труб системы отопления | Ду-25 мм |
Длина подающего трубопровода системы отопления | L = 28,0 м. |
ГВС | отсутствует |
Вентиляция | отсутствует |
Тепловая нагрузка по договору (час/год) | 0,02/47,67 Гкал |
Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.
Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.
Итоговый максимальный расход – 0,008958 Гкал/час или 23 Гкал/год.
В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.