Особенности экранно-вакуумной и порошковой теплоизоляции

Производственное помещение — требования к цеху

Производственное помещение – сердце предприятия, поговорим о том, какое нужно помещение. Здание, в котором располагается оборудование, должно подразделяться на три сектора, которые должны быть изолированы друг от друга и защищены специальными огнеупорными материалами.

В цех необходимо провести электричество и воду. Высота потолков в производственном помещении должна составлять не менее 5 метров.

Приблизительная площадь:

  • Цех по производству — 60 кв. метров;
  • Склад для товаров – 40 кв. метров;
  • Сырьевой склад – 15 кв. метров.

При планировании прежде всего необходимо изучить экономическую структуру, спрос и предложение в различных регионах. Разумно будет выбрать регион, где предложение не полностью покрывает спрос.

Реферат патента 2018 года Материал для экранно-вакуумной теплоизоляции и способ его изготовления

Изобретение относится к тепловой защите объектов космической и/или криогенной техники, а также может быть использовано в других отраслях народного хозяйства. Материал состоит из чередующихся слоев экранов металлизированной теплоотражающей перфорированной пленки и сепарационной прокладки. В качестве прокладки использована разреженная беспылевая полимерная ткань. Указанные слои сварены по краям перфорационных отверстий диаметром от 1 до 8 мм, при шаге перфорации от 10 до 50 мм. Способ изготовления данного материала состоит в том, что указанные чередующиеся слои экранов и прокладочной ткани сваривают одновременно по краям всех перфорационных отверстий. Техническим результатом является уменьшение времени дегазации материала за счет фиксированного прочного бессдвигового соединения металлизированных экранов с прокладкой, при одновременной высокой механической прочности и низкой теплопроводности материала. 2 н.п. ф-лы, 5 ил.

гарантия качества

Теплопроводность вакуумной теплоизоляционной плиты в решающей степени зависит от внутреннего давления плиты. Чтобы гарантировать определенную максимальную теплопроводность, необходимо иметь возможность ее контролировать. В критических случаях применения, когда резкое увеличение теплопроводности имеет серьезные последствия (например, транспортировка биофармацевтических препаратов с контролируемой температурой ), может потребоваться испытание вакуумных изоляционных панелей транспортного контейнера перед каждым использованием. Первый визуальный осмотр панели уже может иметь значение. Поврежденные или некачественные вакуумные изоляционные панели можно определить по неплотно прикрепленной покрывающей пленке. Неповрежденные вакуумные изоляционные панели имеют плотно прилегающую пленку.

Давление газа в изолирующем элементе можно контролировать с помощью различных методов измерения: Приложение возрастающего отрицательного давления снаружи с помощью небольшого всасывающего колокола имеет очень прямой механический эффект: с момента, когда оно падает ниже внутреннего давления, оболочка изолирующего элемента выгнута наружу, что вызвано затенением лазерного луча, параллельного поверхности, которое может быть обнаружено. Другой метод заключается в введении теплового импульса в металлическую пластину внутри вакуумной изоляционной панели, которая служит радиатором, зависящим от давления. Для третьего метода в изолирующий элемент должна быть встроена труба со стальным шариком: шарик вращается магнитно, задержка является индикатором давления газа внутри.

Многослойная криогенная изоляция (невакуумная)

Это вид изоляции отличается от экранно-вакуумной изоляции отсутствием необходимости создания вакуума в изоляционной полости.

При использовании многослойной криогенной изоляции выбор теплоизоляционного материала определяется его гидрофобными свойствами. Чтобы невлагостойкие материалы не теряли своих теплоизолирующих свойств и не разрушались под воздействием криогенных температур из-за превышения допустимой влажности, необходимы дополнительные меры по их защите от возможного намокания.

Для проведения изоляционных работ по технологии многослойной криогенной изоляции предпочтительно использование гидрофобных материалов. Одним из таких материалов является довольно широко применяемый вспененный каучук Armaflex германского производства. Однако применение данного материала ограничено нижним пределом рабочих температур (до -200°С).

На сегодняшний день, наиболее универсальным и эффективным материалом для решения задач по изоляции криогенного оборудования является теплоизоляция на основе аэрогеля – криогель.

Производители материалов для изоляции

Вакуумные панели можно приобрести далеко не во всех строительных магазинах, ведь число их производителей совсем не велико. Более успешной в плане выпуска материалов является Германия – в этой стране есть несколько фирм, которые выпускают новый тип теплоизоляции.

Их основные характеристики:

  • центральная часть из порошка кремниевой кислоты;
  • поверхность из многослойной комбинированной пленки;
  • транспортировка в защите из вспененного полистирола;
  • применение для утепления фасадов, полов;
  • полная безопасность;
  • теплопроводность — 0,005 Вт/м*К.

Компания IZOVER (Россия) также выпускает качественные теплоизолирующие вакуумные плиты, которые можно применять внутри помещений. Середина с вакуумом в них окружена специальным эластичным материалом, отвечающим за плотность прилегания, и алюминиевой пленкой.

Как правильно ставить панели

Монтаж теплоизолирующих панелей осуществляется на клей. Для фиксации не подходят гвозди, саморезы, шурупы, их нельзя разрезать, так как это нарушит герметичность.

При утеплении пола вначале кладут слой полиэтиленовой пленки, потом пласт полистирола толщиной 2 см, после два слоя вакуумных панелей, затем снова полистирол и пленку. В целом для установки нужны определенные знания и навыки, поэтому лучше пригласить профессионалов.

  • https://www.TechGas.ru/2018/09/ekranno-vakkumnaya-izolyatsiya-realnost-primeneniya/
  • https://remontami.ru/poroshkovaya-i-vakuumnaya-teploizolyaciya/
  • https://kraska.guru/dom/istorii/vakuumnaya-teploizolyaciya.html

Архив объявлений

… 6. Энергосберегающий 7. Долговечный 8. Огнеупорный Применение пробкового агломерата (панелей): — Тепло и звукоизоляция наружных стен — Тепло и звукоизоляция полых стен — …

Москва

доставка до ТК 500

• У нас все составляющие для производства отечественных панелей — с европейским качеством ! • У нас проведены лабораторные испытания на адгезию, …

… внутренней герметизации швов и стыков металлических кровель, профнастила, сендвич-панелей, стыков автофургонов и других строительных швов. Герлен АГ 30/2 …

… также широко применяется для герметизации швов профнастила, металлочерепицы, сэндвич-панелей. Работоспособность от -60С до +120С. Срок эксплуатации герметика Герлен …

… балконов и лоджий, полов и потолков, оконных откосов, стыков панелей, подвалов, фундаментов, перекрытий. Материал используется для теплоизоляционной отделки бетонных и …

… надежной герметизации строительных швов и трещин, кровель, профнастила, сэндвич-панелей, стыков при установке окон, автофургонов, кузовов и др. Бутилкаучуковые герметизирующие …

… фальцевой кровли. Успешно используется для герметизации и склеивания сэндвич панелей. Герметизирующая лента Липлент изготовленная на основе бутилкаучука является самым удобным …

Москва

доставка до ТК бесплатно

… поверхностях. Может использоваться в качестве клея для монтажа полиуретановых панелей, пенопласта и других материалов. Обладает отличной липкостью к рубероиду и …

… минут до получения однородной массы. Наносят на поверхность стыка панелей с помощью шпателя, пневматических или ручных шприцов. Слой наносимой мастики …

Смотрите все объявления в архиве

Вакуумно-порошковая теплоизоляция

Вакуумно-порошковая теплоизоляция представляет собой порошкообразный материал, находящийся в ваку-умированном пространстве. При использовании этого вида изоляции процесс теплопередачи включает три одновременно действующих механизма переноса тепла: 1) теплопроводность газа; 2) теплопроводность твердых частиц; 3) излучение. Для получения хорошей теплоизоляции необходимо свести к минимуму действие всех трех механизмов. Отмечалось , что через крупные перлитные порошки теплопередача осуществляется на 70 % за счет теплопроводности и только на 30 % за счет излучения.

К материалам для вакуумно-порошковой теплоизоляции предъявляется ряд дополнительных требований, вследствие чего на практике нашли применение лишь немногие материалы. К этим требованиям, помимо низкого коэффициента теплопроводности относятся малая объемная масса, отсутствие легколетучих примесей, доступность и дешевизна, негорючесть, медленное возрастание теплопроводности при ухудшении вакуума.

В настоящее время для вакуумно-порошковой теплоизоляции применяются, в основном, аэрогель кремниевой кислоты и перлит. Достоинство аэрогеля – низкий коэффициент теплопроводности, сравнительно медленно возрастающий при увеличении давления. Благодаря чрезвычайно малому диаметру пор аэрогель довольно прозрачен для теплового излучения.

Чешуйки пудр, применяемых для вакуумно-порошковой теплоизоляции, имеют одинаковую форму и одинаковую удельную массу. Поэтому в данном случае достаточно иметь эталонную кривую и, сравнивая полученную кривую с эталонной, контролировать, имеет ли пудра требуемую дисперсность.

Жидкий азот также перевозят в железнодорожных цистернах с вакуумно-порошковой теплоизоляцией. Его перевозка не отличается от перевозки жидкого кислорода.

Теплопроводность пористых материалов понижается, как известно, при уменьшении давления газа, заполняющего поры, что используется для создания вакуумно-порошковой теплоизоляции.

Белая сажа и аэросил, представляющие собой разновидности тонкодисперсной двуокиси кремния и отличающиеся от аэрогеля способом получения, также являются эффективными материалами для вакуумно-порошковой теплоизоляции.

Теплоизоляция при хранении жидкого кислорода осуществляется либо созданием глубокого вакуума ( до 0 001 мм рт. ст.) в простран стве между внутренней и внешней стенками сосуда, либо засыпкой теплоизолирующим материалом всех промежутков между стенками сосудов с кислородом и наружным кожухом хранилища. Наибольший эффект достигается при применении так называемой вакуумно-порошковой теплоизоляции, состоящей в том, что в пространство между наружной и внутренней стенками сосуда с жидким кислородом засыпают порошок углекислого магния и затем из этого пространства откачивают воздух до получения глубокого вакуума. Повышенная влажность и наличие трещин в теплоизоляции приводят к значительному увеличению ее теплопроводности и, следовательно, потерь кислорода от испарения.

Теплопроводность газа, находящегося в норах, уменьшается с понижением давления относительно атмосферного и при 10 – 2 – К) 3 AIM рт. ст. становится пренебрежимо малой. Мелкодисперсные материалы, такие как аэрогель кремневой кислоты, перлит, применяются для создания высокоэффективной вакуумно-порошковой теплоизоляции сосудов для сжиженных газов. Еще меньшую теплопроводность имеет вакуумно-многослойная изоляция, представляющая собой набор экранов из ме-таллич.

Литературные данные о коэффициентах переноса в газах при переходном вакууме очень ограничены и носят эмпирический характер. Поэтому были проведены теоретические исследования вопроса, в результате которых удалось получить обобщенные уравнения для коэффициентов переноса в газе ( паре), жидкости и твердом теле. Оказалось, что эти уравнения не только объясняют особенности теплопереноса в топках, но и могут быть использованы для решения ряда актуальных задач теплофизики, газодинамики, приборостроения и вакуумной техники. В частности, на основе обобщенных уравнений построен критериальный метод расчета газодинамического сопротивления и теплообмена тел, обтекаемых дозвуковым и сверхзвуковым потоком разреженного газа, осуществлен расчет вакуумно-порошковой теплоизоляции и теплоэлектрических вакуумметров.

Вакуумная теплоизоляция

Вакуумная теплоизоляция в чистом виде или, как ее называют иначе, высоковакуумная изоляция представляет собой в сущности вакуумированное пространство между теплой и холодной граничными стенками. Тепло в этом пространстве переносится двумя путями: теплопроводностью остаточных газов и тепловым излучением.  

Вакуумная теплоизоляция представляет собой откачанное ( до вакуума 10 – 4 Па и глубже) пространство между двумя хорошо отражающими поверхностями, одна из которых поддерживается при более высокой, а другая при более низкой температурах. Теплопередача через вакуумирован-ное пространство осуществляется главным образом излучением. Так как теплопередача излучением будет подробно рассмотрена в дальнейшем, здесь эти вопросы не обсуждаются. Однако, если вакуум между двумя поверхностями будет хуже указанного выше, возможен значительный клад в теплопередачу за счет теплопроводности газа.  

Применение вакуумной теплоизоляции для оборудования, работающего при низких температурах, создает благоприятные условия для сохранения вакуума.  

Применение вакуумной теплоизоляции для оборудования, работающего при низких температурах, создает благоприятные условия для сохранения вакуума. Газовыделение при понижении температуры быстро уменьшается.  

В условиях вакуумной теплоизоляции перенос тепла излучением происходит большей частью между металлическими поверхностями. Металлы относятся к телам с селективным излучением, у которых степень черноты изменяется в зависимости от длины волны.  

Сосуд с вакуумной теплоизоляцией представляет собой две замкнутых оболочки, одна из которых находится внутри другой.  

Созданы контейнеры с вакуумной теплоизоляцией, поддерживающие температуру в 10 – 15 раз эффективнее обычной изоляции из синтетического пеноматериала.  

Снятие крышки 2 не нарушает вакуумную теплоизоляцию.  

При экранировании теплового излучения в изделиях с вакуумной теплоизоляцией, представляющих собой замкнутые оболочки, каждый последующий экран охватывает предыдущий.  

Примерная конструкция термостата с использованием сосуда Дьюара.  

Значительно повысить экономичность термостатированных кварцевых генераторов можно использованием вакуумной теплоизоляции в виде сосуда Дьюара. Он представляет собой двойной сосуд ( обычно из стекла, в некоторых случаях из металла) с откачанным воздухом и посеребренными поверхностями для уменьшения потерь тепла за счет излучения.  

Ниже рассмотрены более подробно отдельные пути переноса тепла в случае вакуумной теплоизоляции и способы его уменьшения.  

В настоящее время в области глубокого холода применяются три вида вакуумной теплоизоляции: вакуумная в чистом виде – высоковакуумная, вакуумно-порошковая и вакуумно-многослойная.  

Оборудование, предназначенное для хранения, переохлаждения и транспортирования жидкого водорода, должно иметь эффективную вакуумную теплоизоляцию, обеспечивающую минимальный теплоприток к продукту. Конструкция оборудования и трубопроводов, работающих при низких температурах, должна предусматривать компенсацию температурных деформаций.  

Из-за широкого диапазона изменения коэффициентов аккомодации трудно с высокой точностью оценить теплопроводность остаточного газа в вакуумной теплоизоляции. К счастью, эта проблема ве настолько серьезна, поскольку, как правило, в системах теплоизоляции поддерживается такой вакуум, при котором вклад в суммарную теплопередачу передачи тепла вследствие теплопроводности остаточного газа незначителен.  

Магнитные плиты с постоянными магнитами

На рис. 136 показан общий вид, а на рис. 137 – конструкция плиты с постоянными оксидно-бариевыми магнитами. Она имеет чугунное основание 1 коробчатой формы (см. рис. 137), в котором размещен подвижный силовой блок 2. Нижняя опорная плоскость подвижного блока отделена от чугунного основания немагнитным слоем 3, уменьшающим утечки магнитного потока через корпус приспособления. Сверху на основании установлены верхний магнитный блок 7, собранный в раме из немагнитного материала, и адаптерная плита 6. Все эти узлы соединены между собой сквозными винтами и взаимно ориентируются штифтами.

Расстояние между полюсниками на адаптерной плите в целях уменьшения утечки магнитного потока залито немагнитным стиракрилом, который в данном случае является также конструкционным материалом.

Рис. 136. Общий вид плиты с постоянными магнитами

Перемещение подвижного блока 2 осуществляется с помощью шестеренно-эксцентрикового привода, состоящего из рычага-рукоятки с зубчатым сектором 9, шестерни 8, пальца 5 и подушки 4. Последняя размещена в пазу полюсника подвижного блока.

Рис. 137. Конструкция магнитной плиты с постоянными оксидно-бариевыми магнитами

Увеличение усилия, передаваемого рукояткой подвижному блоку (редукция), определяется отношением L:e, где L – длина рукоятки, а е- эксцентриситет. Несмотря на значительную редукцию, усилие на рукоятке все же остается достаточно большим (50-70 Н) и при частых включениях может вызвать дополнительную утомляемость рабочего. В целях полного устранения затрат ручного труда на переключение рукоятки в некоторых конструкциях магнитных плит перемещение подвижного блока механизировано и осуществляется с помощью пневмопривода.

Криогенная изоляция: перлит

Сегодня вспученный перлитовый песок – один из самых востребованных материалов, используемых в криогенной технике.

Что такое вспученный перлит? Это гравий алюмосиликатных вулканических пород, который подвергли тепловому удару при температуре 900-1100°С. При этом влага, находящаяся внутри породы мгновенно испаряется и размягченный гравий буквально взрывается, увеличиваясь в объеме в 4-20 раз и распадаясь на более мелкие фракции. Пористость материала при этом достигает 40-90%, что и определяет основные теплоизоляционные свойства перлита.  

Объемы перлита, применяемого в обычной воздухоразделительной установке, составляет от 3 до 5 тысяч кубометров. Заполнение установки перлитовым песком осуществляется пневмотранспортной системой, что приводит частичному измельчению перлитовых частиц из-за их хрупкости. Плотность засыпки при этом увеличивается, причем, крайне неравномерно. Кроме того, что уплотнение приводит к неоправданному увеличению расхода материала, снижается газопроницаемость и повышается влажность криогенной изоляции. Это приводит не только к снижению теплоизоляционных характеристик, но и к аварийным ситуациям. Риск чрезвычайной ситуации значительно возрастает в случае, если циклы изолирования – разизолирования криогенного оборудования проводились неоднократно.

Тем не менее, относительно низкая стоимость перлита определяет его широкое применение не только в воздухоразделительных установках, но и в криогенных хранилищах, цистернах, газификаторах и другом криогенном оборудовании.

Кроме обычной перлитовой изоляции отечественные производители (такие как НТК «Криогенная техника», ОАО «Криогенмаш», ОАО «Уралкриотехника» и многие другие) оборудуют свою продукцию перлито-вакуумной и многослойной экранно-вакуумной изоляцией.

Применение криогенных емкостей

В наш высокотехнологичный век криогенная аппаратура и ёмкости находят свое применение практически во всех сферах деятельности. Сфера использования криогенных цистерн довольно обширная:

  • Нефтяная и газовая промышленность;
  • Добыча газа и нефти;
  • Авиация;
  • Энергетика;
  • Радиоэлектроника, электротехника;
  • Машиностроение;
  • Легкая промышленность
  • Медицина;
  • Черная и цветная металлургия;
  • Пищевая промышленность;
  • Научные исследования
  • Животноводство, сельское хозяйство (используются для хранения биоматериалов ).

Криогенные жидкости изредка используются также в текстильной и пищевой промышленности (для обработки продуктов, приготовления изысков молекулярной кухни) и других областях народного хозяйства.

Криогенные резервуары — наиболее безопасный способ хранения, транспортировки и выдачи криопродуктов. Для перевозки технических газов используется специальная техника: газовозы, спецавтомобили.

Есть еще один способ доставки технического и природного газа к конечному потребителю — по трубопроводу, но этот метод эффективен только, если расстояние от источника добычи и сжижения газа до места назначения небольшое и га. Когда же оно превышает несколько километров, целесообразно использовать автотранспорт.

Вакуумная панель

Вакуумная панель имеет очень низкий коэффициент теплопроводности – 0,002 Вт/м·К. Она позволяет уменьшить толщину изоляционного слоя в 6 – 10 раз по сравнению с другими теплоизоляционными материалами.

Вакуумная панель

Преимущества вакуумной панели

Принцип действия вакуумной панели

Сравнение теплопроводности вакуумной панели и иных материалов

Описание вакуумной панели:

Вакуумная панель состоит из пористого материала-наполнителя, который помещается в непроницаемую пленку-оболочку, воздух из которой откачивается до давления 1 мбар., после чего оболочка герметизируется.

Вакуумная панель имеет очень низкий коэффициент теплопроводности. Коэффициент теплопроводности может достигать значения 0,002 Вт/м·К.

Основную роль в процессе передачи тепла играет газ, находящийся в порах. Чем меньше размеры пор материала и разветвленнее его структура, тем лучше его теплофизические свойства и, следовательно, ниже коэффициент теплопроводности.

В качестве материала-наполнителя используются дисперсные материалы.

Например, может использоваться нанопористый диоксид кремния SiO2, состоящий из частиц размером 5 – 20 нм, которые объединены в каркас с характерными размерами пор 20 – 150 нм.

Пленка-оболочка – материал, из которого формируются стенки вакуумной изоляционной панели.

Она имеет превосходные барьерные характеристики. Чтобы сформировать оболочку для материала-наполнителя, мембранные пленки завариваются по краям.

Преимущества вакуумной панели:

– применение вакуумной изоляции позволяет уменьшить толщину изоляционного слоя в 6 – 10 раз по сравнению с другими материалами,

– применение вакуумной изоляции позволяет уменьшить вес изоляционного слоя в 2 – 6 раз,

– вакуумная панель – экологически чистый теплоизоляционный материал.

Принцип действия вакуумной панели:

Для понимания высоких теплоизоляционных свойств вакуумной теплоизоляции необходимо знать механизмы переноса тепла.

Основной механизм переноса тепла в твердых телах — это теплопроводность. При нагревании одного из концов металлического стержня поток тепла движется к его другому концу.

Путем теплопроводности тепло может переноситься и через газы. При этом быстрые молекулы теплого слоя газа сталкиваются с медленными молекулами соседнего холодного слоя. В результате возникает поток тепла. Газы из легких молекул (водород) проводят тепло лучше, чем тяжелые газы (азот).

Путем конвекции теплоперенос осуществляется только в газах и жидкостях и основан на том, что при нагревании газа его плотность уменьшается. При неравномерном нагревании более легкие слои поднимаются, тяжелые опускаются.

Вертикальный поток теплоты, связанный с этим движением, как правило, значительно превышает поток, связанный с теплопроводностью.

Излучение — это механизм передачи теплоты электромагнитными волнами. Таким путем происходит нагревание солнцем поверхности земли. Способность тела излучать и поглощать электромагнитные волны определяется его атомной структурой.

Вакуумная технология (вакуумная панель) позволяет исключить все три механизма передачи тепла.

Сосуд Дьюара, или термос, — широко известный пример вакуумной изоляции. В пространстве между двойными стенками сосуда Дьюара создается глубокий вакуум порядка 10-2 Пa. Из-за этого перенос тепла, обусловленный конвекцией и теплопроводностью, практически полностью устранен, и теплопроводность исключительно мала — 10-3 — 10-4Вт/(м•К).

Поскольку разгерметизация сосуда способна нарушить теплоизоляцию, стенки его должны быть абсолютно газо- и влагонепроницаемы.

С целью снижения переноса тепла электромагнитными волнами между стенками сосуда Дьюара перечень используемых материалов ограничен металлом, пленкой и стеклом с металлическим напылением.

Сравнение теплопроводности вакуумной панели и иных материалов:

МатериалВакуумная панельЛьняная теплоизоляцияМинеральная ватаКерамзитобетонПескоблокКирпич
Теплопроводность, Вт/м•К0,002 – 0,00460,0370,0460,14 – 0,660,3 – 0,50,52-0,81

Примечание:  Фото https://www.pexels.com, https://pixabay.com

карта сайта

как сделать дома вакуумные изоляционные теплоизоляционные панели для теплицывакуумная солнечная панель ценавакуумные панели для дома для теплиц купить филимоненко своими рукамивакуумный подъемник подъемники захват стол пресс присоски для монтажа сэндвич панелей купить аренда ценапринцип вакуумной пайки сэндвич панелейтеплицы из вакуумных панелей без отопления филимоненкотехнологии вакуумных панелей филимоненко 859

Виды негорючих высокотемпературных изоляционных материалов по способу изготовления

Все виды высокотемпературной изоляции отличаются друг от друга способом производства и составом сырья. Ниже представлены основные теплоизоляционные высокотемпературные продукты, встречающиеся на строительных рынках. Описаны как давно проверенные, так и новые высокотехнологичные.

  • Самый старый негорючий материал, широко применяемый в промышленности – это минеральная вата. Производится из отходов металлургической промышленности и кварцевого песка. Один из самых дешевых. Может производиться в виде плит и полотна. Реже фасуется ватной массой в мешки и используется для заполнения пустот при строительстве, например, домов. Для изоляции высоких температур применяется только в комбинации с более термостойкими продуктами.
  • Керамзит, перлит и вермикулит – это сыпучие гранулы, для теплоизоляции используются только в смеси с другими веществами, например для установки теплых полов в помещениях.
  • Огнестойкая пена – продукт, получаемый при вспенивании полиуретана в который для огнезащиты добавлены антипирены.
  • Велит – вспененный бетон, обладающий пористой структурой, что снижает его вес и плотность.
  • Стеклопор. Этот сыпучий состав получают при расплавлении калиевых или натриевых стекол с последующим резким охлаждением состава. Самостоятельно не применяется, а только в составе смесей, куда добавляется в качестве средства, для повышения огнестойкости. Из него изготавливают штучные изделия, противостоящие огню.
  • Базальтовый теплоизоляционный материал, производимый из расплавленного базальта, является одним из самых безопасных в использовании, выдерживающий большие температуры. Широко распространен из-за своей универсальности. Может использоваться для внутренних и наружных работ, и в условиях повышенной влажности.
  • Пеностекло. Получается при спекании стеклянного боя при помощи каменного угля, который добавляется для реакции газообразования. Совершенно не горит, почти не проводит тепло, выдерживает огромные температуры. Чаще используют для термоизоляций помещений с влажным технологическим процессом.

Производство вакуумных теплоизоляционных материалов

Новый вид утеплителей производится не во всех странах. Успехов в разработке и производстве вакуумной теплоизоляции добилась Германия. Панели FRONT-VIP компании VACU-IZOTEC KG имеют сердцевину из порошка кремниевой кислоты, завернутого в многослойную комбинированную пленку. Вакуумная оболочка защищается плитами вспененного полистирола толщиной 10 мм.

Один из мировых лидеров в производстве теплоизоляции компания IZOVER предлагает вакуумный утеплитель для размещения внутри здания. Она представляет собой панель, состоящую из вакуумированной сердцевины с алюминиевой пленкой и защитного покрытия для упрощения монтажа. Центральный слой по периметру окружает эластичный материал, обеспечивающий плотное прилегание конструкции. Изделие называется VacuPad 007, цифровое обозначение соответствует степени теплопроводности утеплителя. Использование панелей гарантирует минимальное уменьшение пространства помещений при высокой эффективности изоляции.

Внешнее покрытие материала подбирается исходя из назначения:

  • полиэстеровая фибролитовая плита — крыши и террасы;
  • экструдированный пенополистирол — внутренние стены и подвалы;
  • МДФ — монтаж каркасных конструкций.

Монтаж панелей выполняется с помощью клеевой смеси, их нельзя крепить шурупами или резать.

Недостатки вакуумной теплоизоляции:

Сложность монтажа, для установки необходимы знания и аккуратность. Особенность материала исключает возможность разрезания, сверления или подгонки под нужный размер

При повреждении оболочки панели лишаются теплоизоляционных свойств.
Необходимо соблюдать осторожность не только при монтаже, но и в процессе складирования и транспортировки.
Высокая стоимость вакуумной теплоизоляции не способствует популяризации материала.
Область применения вакуумных панелей

Экранно-вакуумная теплоизоляция часто устанавливается внутри ограждающих конструкций на этапе возведения стен. Размещение между двумя перегородками из бетона или кирпича исключает механическое воздействие и повреждение утеплителя.

Сфера применения не ограничивается стенами, часто дорогостоящая изоляция используется для входной двери и кровли. Материал с каучуковым защитным покрытием устанавливается на пол.

Вакуумная изоляция применяется во многих сферах:

  • животноводческие комплексы;
  • теплицы и овощехранилища;
  • медицина и криогенная техника;
  • спортивные комплексы;
  • холодильное оборудование;
  • судостроение.

Преимущества и недостатки материала

Теплопроводность вакуумной изоляции намного ниже, чем у большинства известных изолирующих материалов (0,004-0,006 Вт/м*К). Такое свойство достигается именно благодаря вакууму, ведь тепло переносится через газы, а в данном случае их потоки отсутствуют. Толщина слоя утеплителя может быть серьезно уменьшена, при этом вес утепляющего пласта тоже снизится в 2-6 раз.

Важно! Вакуумная панель толщиной 4,6 см дает тот же эффект, что и стена из кирпича толщиной в 4,6 м. Все материалы этой группы экологически чистые, безопасные, не содержат токсичных элементов. Они выпускаются в разных формах – есть шаровые, круглые, цилиндрические, квадратные и прямоугольные, 3D-модели, а также изделия с готовыми отверстиями

Они выпускаются в разных формах – есть шаровые, круглые, цилиндрические, квадратные и прямоугольные, 3D-модели, а также изделия с готовыми отверстиями

Все материалы этой группы экологически чистые, безопасные, не содержат токсичных элементов. Они выпускаются в разных формах – есть шаровые, круглые, цилиндрические, квадратные и прямоугольные, 3D-модели, а также изделия с готовыми отверстиями.

Вакуумную теплоизоляцию можно применять даже повторно, а срок ее службы составит не менее 50-80 лет. Материал считается пожаробезопасным (класс огнестойкости А).

К минусам вакуумной теплоизоляции относятся:

  • определенные трудности монтажа;
  • отсутствие возможности подгонки под индивидуальные замеры;
  • нарушение свойств при повреждении;
  • потребность в аккуратной транспортировке;
  • высокая цена.

Виды криогенных резервуаров

Емкости для хранения СПГ и сжиженных технических газов производят в следующих  формах:

  • горизонтальные цилиндры;
  • вертикальные цилиндры;
  • сферические резервуары;

Наружные сосуды стационарных емкостей изготавливают либо из низколегированной  стали, либо из алюминиевого сплава. Внутренние сосуды криогенных резервуаров делают из нержавеющей стали. Максимальный объём криогенных цилиндров составляет 250 м³. Сферические резервуары имеют гораздо больший объём — до 1440 м³. Цилиндры чаще применяют для хранения СПГ, поскольку себестоимость сферических резервуаров гораздо выше. К тому же они представляют некоторые трудности при сборке. Эти сосуды собирают на месте из лепестков сферы(развертки), купола и донышка. Однако, данные типы криогенных емкостей имеют неоспоримые преимущества: больший объем хранимого газа при минимальной площади поверхности, соприкасающейся с хранимым веществом, меньше вероятность коррозии металла.

Цилиндрические горизонтальные резервуары удобные и простые в эксплуатации и обслуживании, отличаются высокой заводской готовностью. Их производят из высокопрочных материалов. Вакуумная изоляция позволяет сохранять заданную температуру с минимальными потерями хранимого вещества. Примерный срок службы таких резервуаров — 20 лет.

Цистерна для транспортировки газа имеет похожее строение. Это два горизонтально расположенных сосуда, внутренний и наружный (сосуд в сосуде),  с  вакуумной теплоизоляцией между ними, предотвращающей теплопритоки из окружающей среды. Исходные характеристики сохраняются примерно 2 года без дополнительной откачки воздуха из теплоизоляционной полости. Такие емкости можно эксплуатировать при любых погодных условиях и температуре воздуха от -60 до +60°С.

Транспортные криоцистерны оснащены специальной рамой с полозьями. Их можно крепить как на транспортное средство, так и на бетонную площадку, где мобильные криогенные емкости используются в составе газификационных установок. Стандартный комплект поставки мобильных криоцилиндров:

  • Криогенная цистерна;
  • Манометр, уровнемер;
  • Рама с полозьями;
  • Испаритель подъёма давления;
  • Арматурный шкаф с запорной и предохранительной арматурой;
  • Устройство для строповки.
  • Техническая документация

Криогель – криогенная изоляция нового поколения

Что такое криогель? Это холст из стекловолокна, насыщенный частицами аэрогеля, покрытый алюминиевой фольгой. Данный криогенный изоляционный материал обладает рядом уникальных свойств, благодаря которым, он был занесен в Книгу рекордов Гинесса по 15 позициям.

Однако нас интересуют его способность обеспечить качественную защиту и длительную безаварийную эксплуатацию криогенного оборудования.
 

Криогель является наилучшим решением по обеспечению качественной защиты и длительной безаварийной эксплуатации криогенного оборудования. Рекордно низкая теплопроводность, и максимально доступный предел рабочих температур в сочетании с гидрофобностью и негорючестью делают этот материал прекрасной криогенной изоляцией для любого вида криогенного оборудования, включая трубопроводы и даже медицинские криогенные хранилища.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий